File size: 3,744 Bytes
1d01e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcdc694
1d01e07
5aa7ed0
1d01e07
 
 
 
dcdc694
 
1d01e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcdc694
 
1d01e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec2cb45
 
 
 
 
 
1d01e07
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import PIL
import spaces
import torch
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.flash_flow_match import (
    FlashFlowMatchEulerDiscreteScheduler,
)
from transformers import AutoTokenizer, LlamaForCausalLM

# Constants
MODEL_PREFIX: str = "HiDream-ai"
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
MODEL_PATH = "HiDream-ai/HiDream-I1-Dev"
MODEL_CONFIGS = {
    "guidance_scale": 0.0,
    "num_inference_steps": 28,
    "shift": 6.0,
    "scheduler": FlashFlowMatchEulerDiscreteScheduler,
}


# Supported image sizes
RESOLUTION_OPTIONS: list[str] = [
    "1024 x 1024 (Square)",
    "768 x 1360 (Portrait)",
    "1360 x 768 (Landscape)",
    "880 x 1168 (Portrait)",
    "1168 x 880 (Landscape)",
    "1248 x 832 (Landscape)",
    "832 x 1248 (Portrait)",
]


tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
text_encoder = LlamaForCausalLM.from_pretrained(
    LLAMA_MODEL_NAME,
    output_hidden_states=True,
    output_attentions=True,
    torch_dtype=torch.bfloat16,
).to("cuda")

transformer = HiDreamImageTransformer2DModel.from_pretrained(
    MODEL_PATH,
    subfolder="transformer",
    torch_dtype=torch.bfloat16,
).to("cuda")

scheduler = MODEL_CONFIGS["scheduler"](
    num_train_timesteps=1000,
    shift=MODEL_CONFIGS["shift"],
    use_dynamic_shifting=False,
)

pipe = HiDreamImagePipeline.from_pretrained(
    MODEL_PATH,
    scheduler=scheduler,
    tokenizer_4=tokenizer,
    text_encoder_4=text_encoder,
    torch_dtype=torch.bfloat16,
).to("cuda", torch.bfloat16)

pipe.transformer = transformer


@spaces.GPU(duration=120)
def generate_image(
    prompt: str, resolution: str, seed: int, progress=gr.Progress(track_tqdm=True)
) -> tuple[PIL.Image.Image, int]:
    if seed == -1:
        seed = torch.randint(0, 1_000_000, (1,)).item()

    msg = "ℹ️ This spaces currently crash because of the memory usage. Please help me fix πŸ˜…"
    raise gr.Error(msg, duration=10)
    height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
    generator = torch.Generator("cuda").manual_seed(seed)

    image = pipe(
        prompt=prompt,
        height=height,
        width=width,
        guidance_scale=MODEL_CONFIGS["guidance_scale"],
        num_inference_steps=MODEL_CONFIGS["num_inference_steps"],
        generator=generator,
    ).images[0]

    torch.cuda.empty_cache()
    return image, seed


# Gradio UI
with gr.Blocks(title="HiDream Image Generator Dev") as demo:
    gr.Markdown("## 🌈 HiDream Image Generator Dev")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="e.g. A futuristic city with floating cars at sunset",
                lines=3,
            )

            resolution = gr.Radio(
                choices=RESOLUTION_OPTIONS,
                value=RESOLUTION_OPTIONS[0],
                label="Resolution",
            )

            seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
            # generate_btn = gr.Button("Generate Image", variant="primary")
            generate_btn = gr.Button(
                "This space currently crash because of the memory usage. Please help me fix πŸ˜…",
                variant="primary",
                interactive=False,
            )
            seed_used = gr.Number(label="Seed Used", interactive=False)

        with gr.Column():
            output_image = gr.Image(label="Generated Image", type="pil")

    generate_btn.click(
        fn=generate_image,
        inputs=[prompt, resolution, seed],
        outputs=[output_image, seed_used],
    )

if __name__ == "__main__":
    demo.launch()