Spaces:
Paused
Paused
indent
Browse files
app.py
CHANGED
@@ -1,142 +1,142 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
scheduler=scheduler,
|
77 |
-
tokenizer_4=tokenizer,
|
78 |
-
text_encoder_4=text_encoder,
|
79 |
-
torch_dtype=torch.bfloat16,
|
80 |
-
).to("cuda", torch.bfloat16)
|
81 |
-
|
82 |
-
pipe.transformer = transformer
|
83 |
-
|
84 |
-
|
85 |
-
@spaces.GPU(duration=90)
|
86 |
-
def generate_image(
|
87 |
-
prompt: str,
|
88 |
-
resolution: str,
|
89 |
-
seed: int,
|
90 |
-
) -> tuple[PIL.Image.Image, int]:
|
91 |
-
if seed == -1:
|
92 |
-
seed = torch.randint(0, 1_000_000, (1,)).item()
|
93 |
-
|
94 |
-
height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
|
95 |
-
generator = torch.Generator("cuda").manual_seed(seed)
|
96 |
-
|
97 |
-
image = pipe(
|
98 |
-
prompt=prompt,
|
99 |
-
height=height,
|
100 |
-
width=width,
|
101 |
-
guidance_scale=MODEL_CONFIGS["guidance_scale"],
|
102 |
-
num_inference_steps=MODEL_CONFIGS["num_inference_steps"],
|
103 |
-
generator=generator,
|
104 |
-
).images[0]
|
105 |
-
|
106 |
-
torch.cuda.empty_cache()
|
107 |
-
return image, seed
|
108 |
-
|
109 |
-
|
110 |
-
# Gradio UI
|
111 |
-
with gr.Blocks(title="HiDream Image Generator") as demo:
|
112 |
-
gr.Markdown("## 🌈 HiDream Image Generator")
|
113 |
-
|
114 |
-
with gr.Row():
|
115 |
-
with gr.Column():
|
116 |
-
prompt = gr.Textbox(
|
117 |
-
label="Prompt",
|
118 |
-
placeholder="e.g. A futuristic city with floating cars at sunset",
|
119 |
-
lines=3,
|
120 |
-
)
|
121 |
-
|
122 |
-
resolution = gr.Radio(
|
123 |
-
choices=RESOLUTION_OPTIONS,
|
124 |
-
value=RESOLUTION_OPTIONS[0],
|
125 |
-
label="Resolution",
|
126 |
-
)
|
127 |
-
|
128 |
-
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
129 |
-
generate_btn = gr.Button("Generate Image", variant="primary")
|
130 |
-
seed_used = gr.Number(label="Seed Used", interactive=False)
|
131 |
-
|
132 |
-
with gr.Column():
|
133 |
-
output_image = gr.Image(label="Generated Image", type="pil")
|
134 |
-
|
135 |
-
generate_btn.click(
|
136 |
-
fn=generate_image,
|
137 |
-
inputs=[prompt, resolution, seed],
|
138 |
-
outputs=[output_image, seed_used],
|
139 |
-
)
|
140 |
-
|
141 |
-
if __name__ == "__main__":
|
142 |
-
demo.launch()
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import PIL
|
5 |
+
import spaces
|
6 |
+
import torch
|
7 |
+
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
|
8 |
+
from hi_diffusers.schedulers.flash_flow_match import (
|
9 |
+
FlashFlowMatchEulerDiscreteScheduler,
|
10 |
+
)
|
11 |
+
from transformers import AutoTokenizer, LlamaForCausalLM
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
MODEL_PREFIX: str = "HiDream-ai"
|
15 |
+
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
16 |
+
MODEL_PATH = "HiDream-ai/HiDream-I1-Dev"
|
17 |
+
MODEL_CONFIGS: dict[str, Any] = {
|
18 |
+
"guidance_scale": 0.0,
|
19 |
+
"num_inference_steps": 28,
|
20 |
+
"shift": 6.0,
|
21 |
+
"scheduler": FlashFlowMatchEulerDiscreteScheduler,
|
22 |
+
}
|
23 |
+
|
24 |
+
# Model configurations
|
25 |
+
# MODEL_CONFIGS: dict[str, dict] = {
|
26 |
+
# "full": {
|
27 |
+
# "path": f"{MODEL_PREFIX}/HiDream-I1-Full",
|
28 |
+
# "guidance_scale": 5.0,
|
29 |
+
# "num_inference_steps": 50,
|
30 |
+
# "shift": 3.0,
|
31 |
+
# "scheduler": FlowUniPCMultistepScheduler,
|
32 |
+
# },
|
33 |
+
# "fast": {
|
34 |
+
# "path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
|
35 |
+
# "guidance_scale": 0.0,
|
36 |
+
# "num_inference_steps": 16,
|
37 |
+
# "shift": 3.0,
|
38 |
+
# "scheduler": FlashFlowMatchEulerDiscreteScheduler,
|
39 |
+
# },
|
40 |
+
# }
|
41 |
+
|
42 |
+
# Supported image sizes
|
43 |
+
RESOLUTION_OPTIONS: list[str] = [
|
44 |
+
"1024 x 1024 (Square)",
|
45 |
+
"768 x 1360 (Portrait)",
|
46 |
+
"1360 x 768 (Landscape)",
|
47 |
+
"880 x 1168 (Portrait)",
|
48 |
+
"1168 x 880 (Landscape)",
|
49 |
+
"1248 x 832 (Landscape)",
|
50 |
+
"832 x 1248 (Portrait)",
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
|
55 |
+
text_encoder = LlamaForCausalLM.from_pretrained(
|
56 |
+
LLAMA_MODEL_NAME,
|
57 |
+
output_hidden_states=True,
|
58 |
+
output_attentions=True,
|
59 |
+
torch_dtype=torch.bfloat16,
|
60 |
+
).to("cuda")
|
61 |
+
|
62 |
+
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
63 |
+
MODEL_PATH,
|
64 |
+
subfolder="transformer",
|
65 |
+
torch_dtype=torch.bfloat16,
|
66 |
+
).to("cuda")
|
67 |
+
|
68 |
+
scheduler = MODEL_CONFIGS["scheduler"](
|
69 |
+
num_train_timesteps=1000,
|
70 |
+
shift=MODEL_CONFIGS["shift"],
|
71 |
+
use_dynamic_shifting=False,
|
72 |
+
)
|
73 |
+
|
74 |
+
pipe = HiDreamImagePipeline.from_pretrained(
|
75 |
+
MODEL_PATH,
|
76 |
+
scheduler=scheduler,
|
77 |
+
tokenizer_4=tokenizer,
|
78 |
+
text_encoder_4=text_encoder,
|
79 |
+
torch_dtype=torch.bfloat16,
|
80 |
+
).to("cuda", torch.bfloat16)
|
81 |
+
|
82 |
+
pipe.transformer = transformer
|
83 |
+
|
84 |
+
|
85 |
+
@spaces.GPU(duration=90)
|
86 |
+
def generate_image(
|
87 |
+
prompt: str,
|
88 |
+
resolution: str,
|
89 |
+
seed: int,
|
90 |
+
) -> tuple[PIL.Image.Image, int]:
|
91 |
+
if seed == -1:
|
92 |
+
seed = torch.randint(0, 1_000_000, (1,)).item()
|
93 |
+
|
94 |
+
height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
|
95 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
96 |
+
|
97 |
+
image = pipe(
|
98 |
+
prompt=prompt,
|
99 |
+
height=height,
|
100 |
+
width=width,
|
101 |
+
guidance_scale=MODEL_CONFIGS["guidance_scale"],
|
102 |
+
num_inference_steps=MODEL_CONFIGS["num_inference_steps"],
|
103 |
+
generator=generator,
|
104 |
+
).images[0]
|
105 |
+
|
106 |
+
torch.cuda.empty_cache()
|
107 |
+
return image, seed
|
108 |
+
|
109 |
+
|
110 |
+
# Gradio UI
|
111 |
+
with gr.Blocks(title="HiDream Image Generator") as demo:
|
112 |
+
gr.Markdown("## 🌈 HiDream Image Generator")
|
113 |
+
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column():
|
116 |
+
prompt = gr.Textbox(
|
117 |
+
label="Prompt",
|
118 |
+
placeholder="e.g. A futuristic city with floating cars at sunset",
|
119 |
+
lines=3,
|
120 |
+
)
|
121 |
+
|
122 |
+
resolution = gr.Radio(
|
123 |
+
choices=RESOLUTION_OPTIONS,
|
124 |
+
value=RESOLUTION_OPTIONS[0],
|
125 |
+
label="Resolution",
|
126 |
+
)
|
127 |
+
|
128 |
+
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
129 |
+
generate_btn = gr.Button("Generate Image", variant="primary")
|
130 |
+
seed_used = gr.Number(label="Seed Used", interactive=False)
|
131 |
+
|
132 |
+
with gr.Column():
|
133 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
134 |
+
|
135 |
+
generate_btn.click(
|
136 |
+
fn=generate_image,
|
137 |
+
inputs=[prompt, resolution, seed],
|
138 |
+
outputs=[output_image, seed_used],
|
139 |
)
|
140 |
|
141 |
+
if __name__ == "__main__":
|
142 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|