File size: 3,882 Bytes
1d01e07
 
 
 
ac79db3
1d01e07
 
ac79db3
 
 
 
 
1d01e07
 
 
 
 
 
 
 
 
 
 
 
ac79db3
1d01e07
 
d34889d
 
 
 
 
 
 
1d01e07
 
ac79db3
 
 
1d01e07
 
ac79db3
1d01e07
 
 
ac79db3
 
1d01e07
ac79db3
1d01e07
ac79db3
 
 
1d01e07
 
 
ac79db3
1d01e07
ac79db3
1d01e07
 
 
 
 
 
 
 
 
ac79db3
1d01e07
 
 
ac79db3
1d01e07
ac79db3
1d01e07
 
d34889d
1d01e07
ac79db3
 
 
 
1d01e07
113fc70
 
 
1d01e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34889d
 
1d01e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac79db3
1d01e07
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gradio as gr
import PIL
import spaces
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
)
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig

# Constants
MODEL_PREFIX: str = "HiDream-ai"
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
MODEL_PATH = "HiDream-ai/HiDream-I1-full"
MODEL_CONFIGS = {
    "guidance_scale": 5.0,
    "num_inference_steps": 50,
    "shift": 3.0,
    "scheduler": FlowUniPCMultistepScheduler,
}


# Supported image sizes
RESOLUTION_OPTIONS: list[str] = [
    "1024 x 1024",
    "768 x 1360",
    "1360 x 768",
    "880 x 1168",
    "1168 x 880",
    "1248 x 832",
    "832 x 1248",
]

quant_config = TransformersBitsAndBytesConfig(
    load_in_4bit=True,
)

tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
text_encoder = AutoModelForCausalLM.from_pretrained(
    LLAMA_MODEL_NAME,
    output_hidden_states=True,
    output_attentions=True,
    low_cpu_mem_usage=True,
    quantization_config=quant_config,
    torch_dtype=torch.bfloat16,
)

quant_config = DiffusersBitsAndBytesConfig(
    load_in_4bit=True,
)
transformer = HiDreamImageTransformer2DModel.from_pretrained(
    MODEL_PATH,
    subfolder="transformer",
    quantization_config=quant_config,
    torch_dtype=torch.bfloat16,
)

scheduler = MODEL_CONFIGS["scheduler"](
    num_train_timesteps=1000,
    shift=MODEL_CONFIGS["shift"],
    use_dynamic_shifting=False,
)

pipe = HiDreamImagePipeline.from_pretrained(
    MODEL_PATH,
    transformer=transformer,
    scheduler=scheduler,
    tokenizer_4=tokenizer,
    text_encoder_4=text_encoder,
    device_map="balanced",
    torch_dtype=torch.bfloat16,
)


@spaces.GPU(duration=120)
def generate_image(
    prompt: str,
    resolution: str,
    seed: int,
    progress=gr.Progress(track_tqdm=True),  # noqa: ARG001, B008
) -> tuple[PIL.Image.Image, int]:
    gr.Info(
        "This Spaces is an unofficial quantized version of HiDream-ai-full. It is not as good as the full version, but it is faster and uses less memory."
    )
    if seed == -1:
        seed = torch.randint(0, 1_000_000, (1,)).item()

    height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
    generator = torch.Generator("cuda").manual_seed(seed)

    image = pipe(
        prompt=prompt,
        height=height,
        width=width,
        guidance_scale=MODEL_CONFIGS["guidance_scale"],
        num_inference_steps=MODEL_CONFIGS["num_inference_steps"],
        generator=generator,
    ).images[0]

    torch.cuda.empty_cache()
    return image, seed


# Gradio UI
with gr.Blocks(title="HiDream Image Generator Full") as demo:
    gr.Markdown("## 🌈 HiDream Image Generator Full")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="e.g. A futuristic city with floating cars at sunset",
                lines=3,
            )

            resolution = gr.Radio(
                choices=RESOLUTION_OPTIONS,
                value=RESOLUTION_OPTIONS[0],
                label="Resolution",
            )

            seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
            generate_btn = gr.Button("Generate Image", variant="primary")
            seed_used = gr.Number(label="Seed Used", interactive=False)

        with gr.Column():
            output_image = gr.Image(label="Generated Image", type="pil")

    generate_btn.click(
        fn=generate_image,
        inputs=[prompt, resolution, seed],
        outputs=[output_image, seed_used],
    )

if __name__ == "__main__":
    demo.launch()