Spaces:
Build error
Build error
File size: 22,559 Bytes
76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 08d80be 76c1d81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
import os
from pathlib import Path
import shutil
import tempfile
from typing import List
import gradio as gr
import uuid
from typing_extensions import TypedDict, Tuple
from fastapi import FastAPI
app = FastAPI()
# create a static directory to store the static files
GS_DIR = Path(str(tempfile.gettempdir())) / "gaussian_splatting_gradio"
GS_DIR.mkdir(parents=True, exist_ok=True)
StateDict = TypedDict("StateDict", {
"uuid": str,
})
# http://localhost:7860/file=/tmp/gradio/c2110a7de804b39754d229de426dc9307bc03aea/page.svelte
HOST = "localhost"
PORT = 7860
home_markdown = """
...
"""
step1_markdown = """
# Step 1 - Split Video into Frames
In the journey of transforming a video into a 3D Gaussian Splatting, the initial step is the conversion of the video into individual frames. You can here provide a **video file** and specify how much image you want to extract per second (*fps*). The application will then automatically extract the frames from the video and prepare them for the next step in the process.
However, you can also do this step manually and upload the frames directory by yourself in the next step. In this case, you can skip this step and go directly to the next step.
Please not that blurry frames will mostlikely result in a bad 3D model. So, make sure that the video is clear enough.
"""
step2_markdown = """
# Step 2 - SfM using Colmap
In this step we use Colmap (https://github.com/colmap/colmap). This process utilizes the frames extracted from the uploaded video to generate camera parameters and a point cloud, which are essential components for the 3D Gaussian Splatting process.
This step could take a while depending on the number of frames and the resolution. So, please be patient.
You might want to do this step manually and upload the frames directory by yourself in the next step. In this case, you can skip this step and go directly to the next step.
"""
step3_markdown = """
# Step 3 - 3D Gaussian Splatting
In this final step we use the 3D Gaussian Splatting Cuda implementation by MrNeRF (https://twitter.com/janusch_patas): https://github.com/MrNeRF/gaussian-splatting-cuda.
As it's quite rapid to train, you can easily use a high number of iterations.
"""
def getPlyFile(session_state_value: StateDict) -> str:
return f"/tmp/gaussian_splatting_gradio/{session_state_value['uuid']}/output/final_point_cloud.ply"
def getCamerasFile(session_state_value: StateDict) -> str:
return f"/tmp/gaussian_splatting_gradio/{session_state_value['uuid']}/output/cameras.json"
def getZipFile(session_state_value: StateDict) -> str:
return f"/tmp/gaussian_splatting_gradio/{session_state_value['uuid']}/result.zip"
def makeResult(session_state_value: StateDict) -> tuple[str, str, str]:
ply_file = getPlyFile(session_state_value)
cameras_file = getCamerasFile(session_state_value)
zip_file = getZipFile(session_state_value)
return [ply_file, cameras_file, zip_file]
# Utility functions
def createStateSession(previous_session: StateDict) -> StateDict:
if previous_session["uuid"] is None:
# Create new session
session_uuid = str(uuid.uuid4())
print("Creating new session: ", session_uuid)
session_tmpdirname = GS_DIR / str(session_uuid)
session_tmpdirname.mkdir(parents=True, exist_ok=True)
print('Created temporary directory: ', session_tmpdirname)
session = StateDict(
uuid=session_uuid,
)
else:
# Use previous session
session = previous_session
return session
def removeStateSession(session_state_value: StateDict):
# Clean up previous session
session_uuid = session_state_value["uuid"]
session_tmpdirname = GS_DIR / str(session_uuid)
print('Removing temporary directory: ', session_tmpdirname)
shutil.rmtree(session_tmpdirname)
return StateDict(
uuid=None,
)
def makeButtonVisible(btn_value: str) -> gr.Button:
return gr.Button(btn_value, visible=True)
# Process functions
def process_ffmpeg(
session_state_value: StateDict,
ffmpeg_input: str,
ffmpeg_fps: int,
ffmpeg_qscale: int,
) -> list[str]:
# Ensure that a session is active
if session_state_value["uuid"] is None:
return
# Set up session directory
session_path = GS_DIR / str(session_state_value['uuid'])
logfile_path = Path(session_path) / "ffmpeg_log.txt"
logfile_path.touch()
try:
from services.ffmpeg import ffmpeg_run
with logfile_path.open("w") as log_file:
ffmpeg_run(
video_path = Path(ffmpeg_input),
output_path = session_path,
fps = int(ffmpeg_fps),
qscale = int(ffmpeg_qscale),
stream_file=log_file
)
print("Done with ffmpeg")
except Exception as e:
print(f"Error - {e}")
# print('Error - Removing temporary directory', session_path)
# shutil.rmtree(session_path)
# Get the list of all the file of (session_path / "input")
list_of_jpgs = [str(f) for f in (session_path / "input").glob("*.jpg")]
return list_of_jpgs
def processColmap(
session_state_value: StateDict,
colmap_inputs: List[tempfile.NamedTemporaryFile],
colmap_camera: str,
enable_rerun: bool
) -> Tuple[str, str]:
# Ensure that a session is active
if session_state_value["uuid"] is None:
return "", ""
# Set up session directory
session_path = GS_DIR / str(session_state_value['uuid'])
logfile_path = Path(session_path) / "colmap_log.txt"
logfile_path.touch()
rerunfile_path = Path(session_path) / "rerun_page.html"
rerunfile_path.touch()
(session_path / "input").mkdir(parents=True, exist_ok=True)
for file in colmap_inputs:
print("copying", file.name, "to", session_path / "input")
shutil.copy(file.name, session_path / "input")
try:
from services.colmap import colmap
with logfile_path.open("w") as log_file:
colmap(
source_path=session_path,
camera=str(colmap_camera),
stream_file=log_file
)
print("Done with colmap")
if enable_rerun:
from services.rerun import read_and_log_sparse_reconstruction
html = read_and_log_sparse_reconstruction(
exp_name = str(session_state_value['uuid']),
dataset_path = session_path,
)
print("Done with rerun")
else:
html = "Rerun was disable !"
with rerunfile_path.open("w") as rerunfile:
rerunfile.write(html)
except Exception as e:
print(f"Error - {e}")
# print('Error - Removing temporary directory', session_path)
# shutil.rmtree(session_path)
# zip the session_path folder
archive = shutil.make_archive("result", 'zip', GS_DIR, session_path)
print('Created zip file', archive)
return archive, rerunfile_path
def processGaussianSplattingCuda(
session_state_value: StateDict,
gs_input: tempfile.NamedTemporaryFile,
gs_iterations: int,
gs_convergence_rate: float,
gs_resolution: int,
) -> Tuple[str, str]:
# Ensure that a session is active
if session_state_value["uuid"] is None:
return
# Set up session directory
session_path = GS_DIR / str(session_state_value['uuid'])
logfile_path = Path(session_path) / "gaussian_splatting_cuda_log.txt"
logfile_path.touch()
# Unzip the gs_input file to the session_path
shutil.unpack_archive(gs_input.name, session_path)
# Copy the gs_input directory to the session_path
# shutil.copytree(gs_input, session_path)
try:
from services.gaussian_splatting_cuda import gaussian_splatting_cuda
with logfile_path.open("w") as log_file:
gaussian_splatting_cuda(
data_path = session_path,
output_path = session_path / "output",
gs_command = str(Path(__file__).parent.absolute() / "build" / 'gaussian_splatting_cuda'),
iterations = int(gs_iterations),
convergence_rate = float(gs_convergence_rate),
resolution = int(gs_resolution),
enable_cr_monitoring = False,
force = False,
empty_gpu_cache = False,
stream_file = log_file
)
print("Done with gaussian_splatting_cuda")
# Create a zip of the session_path folder
archive = shutil.make_archive("result", 'zip', GS_DIR, session_path)
print('Created zip file', archive)
# Move the zip file to the session_path folder
shutil.move(archive, session_path)
except Exception as e:
print(f"Error - {e}")
# print('Error - Removing temporary directory', session_path)
# shutil.rmtree(session_path)
return (
session_path / "output" / "final_point_cloud.ply",
session_path / "output" / "cameras.json",
)
def updateLog(logname:str, session_state_value: StateDict) -> str:
if session_state_value["uuid"] is None:
return ""
log_file = GS_DIR / str(session_state_value['uuid']) / f"{logname}.txt"
if not log_file.exists():
return ""
with log_file.open("r") as log_file:
logs = log_file.read()
return logs
def bindStep1Step2(step1_output: list[tempfile.NamedTemporaryFile]) -> list[str]:
return [file.name for file in step1_output]
def bindStep2Step3(step2_output: tempfile.NamedTemporaryFile) -> str:
return step2_output.name
def makeRerunIframe(rerun_html : tempfile.NamedTemporaryFile) -> str:
# If rerun_html is bigger than 300MB, then we don't show it
print(f"Rerun file size: {os.stat(rerun_html.name).st_size}")
if os.stat(rerun_html.name).st_size > 100_000_000:
print("Rerun file is too big, not showing it")
return ""
filepath = rerun_html.name
print("filepath", filepath)
return f"""<iframe src="/file={filepath}" width="100%"; height="1080px"></iframe>"""
with gr.Blocks() as demo:
#############################
########## State ############
#############################
session_state = gr.State({
"uuid": None,
})
#############################
###### UI Components ########
#############################
gr.Markdown("# Gaussian Splatting Kit")
gr.Markdown("Click on the **Duplicate** button to create a new instance of this app.")
duplicate_button = gr.DuplicateButton()
gr.Markdown(value=home_markdown)
with gr.Tab("Slit Video into Frames"):
step1_description = gr.Markdown(step1_markdown)
# Video Frames
with gr.Row():
# Video Frames - Inputs
with gr.Column():
# Video Frames - Inputs - Video File
step1_input = gr.PlayableVideo(
format="mp4",
source="upload",
label="Upload a video",
include_audio=False
)
# Video Frames - Inputs - Parameters
with gr.Row(variant="panel"):
# Video Frames - Inputs - Parameters - FFMPEG FPS
step1_fps = gr.Number(
label="FFMPEG Fps",
value=1,
minimum=1,
maximum=5,
step=0.10,
)
# Video Frames - Inputs - Parameters - FFMPEG Qscale
step1_qscale = gr.Number(
label="FFMPEG Qscale",
value=1,
minimum=1,
maximum=5,
step=1,
)
# Video Frames - Outputs
with gr.Column():
# Video Frames - Outputs - Video File
step1_output = gr.File(
label="Frames",
file_count="directory",
type="file",
interactive=False,
)
# Video Frames - Outputs - Logs
step1_logs = gr.Textbox(
label="Videos Logs",
interactive=False,
show_copy_button=True
)
# Video Frames - Process Button
step1_processbtn = gr.Button("Process", visible=True)
# Video Frames - Visualize
# Video Frames - Visualize -
# step1_visualize_gallery = gr.Gallery()
with gr.Tab("Colmap"):
step2_description = gr.Markdown(step2_markdown)
# Colmap
with gr.Row():
# Colmap - Inputs
with gr.Column():
# Colmap - Inputs - Frames Directory
step2_input = gr.File(
label="Upload a frames directory",
file_count="directory",
type="file",
interactive=True,
)
# Colmap - Inputs - Parameters
with gr.Row(variant="panel"):
# Colmap - Inputs - Parameters - Colmap Camera
step2_camera = gr.Dropdown(
label="COLMAP Camera",
value="OPENCV",
choices=["OPENCV", "SIMPLE_PINHOLE", "PINHOLE", "SIMPLE_RADIAL", "RADIAL"],
)
# Colmap - Inputs - Parameters - Enable Rerun
step2_rerun = gr.Checkbox(
value=True,
label="Enable Rerun",
)
# Colmap - Outputs
with gr.Column():
# Colmap - Outputs - Video File
step2_output = gr.File(
label="Colmap",
file_count="single",
file_types=[".zip"],
type="file",
interactive=False,
)
# Colmap - Outputs - Logs
step2_logs = gr.Textbox(
label="Colmap Logs",
interactive=False,
show_copy_button=True
)
# Colmap - Process Button
step2_processbtn = gr.Button("Process", visible=True)
# Colmap - Visualize
# Colmap - Visualize - Rerun HTML File
step_2_visualize_html = gr.File(
label="Rerun HTML",
file_count="single",
file_types=[".html"],
type="file",
interactive=False,
visible=False
)
# Colmap - Visualize - Rerun HTML
step_2_visualize = gr.HTML("Rerun", visible=True)
with gr.Tab("Gaussian Splatting"):
step3_description = gr.Markdown(step3_markdown)
# Gaussian Splatting
with gr.Row():
# Gaussian Splatting - Inputs
with gr.Column():
# Gaussian Splatting - Inputs - Colmap + Frames
step3_input = gr.File(
label="Upload a colmap + frames directory",
file_count="single",
file_types=[".zip"],
type="file",
interactive=True,
)
# Gaussian Splatting - Inputs - Parameters
with gr.Row(variant="panel"):
# Gaussian Splatting - Inputs - Parameters - GS Iterations
step3_iterations = gr.Number(
label="GS Iterations",
value=10_000,
minimum=1_000,
maximum=50_000,
step=1_000,
)
# Gaussian Splatting - Inputs - Parameters - GS Convergence Rate
step3_convergence_rate = gr.Number(
label="GS Convergence Rate",
value=0.01,
minimum=0.01,
maximum=1,
step=0.01,
)
# Gaussian Splatting - Inputs - Parameters - GS Resolution
step3_resolution = gr.Number(
label="GS Resolution",
value=512,
minimum=128,
maximum=1024,
step=128,
)
# Gaussian Splatting - Outputs
with gr.Column():
with gr.Row():
# Gaussian Splatting - Outputs - PLY File
step3_output1 = gr.File(
label="PLY File",
file_count="single",
type="file",
interactive=False,
)
# Gaussian Splatting - Outputs - Cameras File
step3_output2 = gr.File(
label="Cameras File",
file_count="single",
type="file",
interactive=False,
)
# Gaussian Splatting - Outputs - Logs
step3_logs = gr.Textbox(
label="Gaussian Splatting Logs",
interactive=False,
show_copy_button=True
)
# Gaussian Splatting - Process Button
step3_processbtn = gr.Button("Process", visible=True)
# Gaussian Splatting - Visualize
# Gaussian Splatting - Visualize - Antimatter15 HTML
# step_3_visualize = gr.HTML(getAntimatter15HTML(), visible=True)
step_3_visualize = gr.Button("Visualize", visible=True, link="https://antimatter15.com/splat/")
#############################
########## Events ###########
#############################
### Step 1
# Make the process button visible when a video is uploaded
step1_upload_event = step1_input.upload(
fn=createStateSession,
inputs=[session_state],
outputs=[session_state]
).success(
fn=makeButtonVisible,
inputs=[step1_processbtn],
outputs=[step1_processbtn],
)
# Do the processing when the process button is clicked
step1_processevent = step1_processbtn.click(
fn=process_ffmpeg,
inputs=[session_state, step1_input, step1_fps, step1_qscale],
outputs=[step1_output],
).success(
fn=bindStep1Step2,
inputs=[step1_output],
outputs=[step2_input],
).success(
fn=makeButtonVisible,
inputs=[step2_processbtn],
outputs=[step2_processbtn],
)
# Update the logs every 2 seconds
step1_logsevent = step1_processbtn.click(
fn=lambda session: updateLog("ffmpeg_log", session),
inputs=[session_state],
outputs=[step1_logs],
every=2,
)
## Step 2
# Make the process button visible when a video is uploaded
step2_upload_event = step2_input.upload(
fn=createStateSession,
inputs=[session_state],
outputs=[session_state]
).success(
fn=makeButtonVisible,
inputs=[step2_processbtn],
outputs=[step2_processbtn],
)
# Do the processing when the process button is clicked
step2_processevent = step2_processbtn.click(
fn=processColmap,
inputs=[session_state, step2_input, step2_camera, step2_rerun],
outputs=[step2_output, step_2_visualize_html]
).success(
fn=bindStep2Step3,
inputs=[step2_output],
outputs=[step3_input],
).success(
fn=makeButtonVisible,
inputs=[step3_processbtn],
outputs=[step3_processbtn],
).then(
fn=makeRerunIframe,
inputs=[step_2_visualize_html],
outputs=[step_2_visualize],
)
# Update the logs every 2 seconds
step2_logsevent = step2_processbtn.click(
fn=lambda session: updateLog("colmap_log", session),
inputs=[session_state],
outputs=[step2_logs],
every=2,
)
## Step 3
# Make the process button visible when a video is uploaded
step3_upload_event = step3_input.upload(
fn=createStateSession,
inputs=[session_state],
outputs=[session_state]
).success(
fn=makeButtonVisible,
inputs=[step3_processbtn],
outputs=[step3_processbtn],
)
# Do the processing when the process button is clicked
step3_processevent = step3_processbtn.click(
fn=processGaussianSplattingCuda,
inputs=[session_state, step3_input, step3_iterations, step3_convergence_rate, step3_resolution],
outputs=[step3_output1, step3_output2]
)
# .success(
# fn=lambda x: x,
# inputs=[step3_output1, step3_output2],
# outputs=[],
# )
# Update the logs every 2 seconds
step3_logsevent = step3_processbtn.click(
fn=lambda session: updateLog("gaussian_splatting_cuda_log", session),
inputs=[session_state],
outputs=[step3_logs],
every=2,
)
# reset_button = gr.ClearButton(
# components=[video_input, text_log, ffmpeg_fps, ffmpeg_qscale, colmap_camera],
# label="Reset",
# visible=False,
# )
# print(f"async (x) => {{ {getJS(url='http://0.0.0.0:7860/output/37c7ae54-7752-4e7b-8ba9-bab32c86b316/output/point_cloud/iteration_100/point_cloud.ply')} }}")
# show_button.click(
# fn=None,
# inputs=[],
# outputs=[],
# _js=f"async (x) => {{ {getJS(url='http://0.0.0.0:7860/output/37c7ae54-7752-4e7b-8ba9-bab32c86b316/output/point_cloud/iteration_100/point_cloud.ply')} }}"
# ).then(
# fn=None,
# inputs=[],
# outputs=[],
# _js=f"async (x) => {{ {getJS(url='http://0.0.0.0:7860/output/37c7ae54-7752-4e7b-8ba9-bab32c86b316/output/point_cloud/iteration_100/point_cloud.ply')} }}"
# )
# gr.LoginButton, gr.LogoutButton
# gr.HuggingFaceDatasetSaver
# gr.OAuthProfile
# with gr.Tab("jsdn"):
# input_mic = gr.HTML(getRerunHTML())
demo.queue()
demo.launch()
# mount Gradio app to FastAPI app
# app = gr.mount_gradio_app(app, demo, path="/")
# if __name__ == "__main__":
# uvicorn.run(app, host="0.0.0.0", port=7860, ws_max_size=16777216*1000)
|