rgb2x / x2rgb /gradio_demo_x2rgb.py
blanchon's picture
Initial commit
a9af355
raw
history blame
6.53 kB
import spaces
import os
from typing import cast
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import DDIMScheduler
from load_image import load_exr_image, load_ldr_image
from pipeline_x2rgb import StableDiffusionAOVDropoutPipeline
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
current_directory = os.path.dirname(os.path.abspath(__file__))
_pipe = StableDiffusionAOVDropoutPipeline.from_pretrained(
"zheng95z/x-to-rgb",
torch_dtype=torch.float16,
cache_dir=os.path.join(current_directory, "model_cache"),
).to("cuda")
pipe = cast(StableDiffusionAOVDropoutPipeline, _pipe)
pipe.scheduler = DDIMScheduler.from_config(
pipe.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)
pipe.set_progress_bar_config(disable=True)
pipe.to("cuda")
pipe = cast(StableDiffusionAOVDropoutPipeline, pipe)
@spaces.GPU
def generate(
albedo,
normal,
roughness,
metallic,
irradiance,
prompt: str,
seed: int,
inference_step: int,
num_samples: int,
guidance_scale: float,
image_guidance_scale: float,
) -> list[Image.Image]:
generator = torch.Generator(device="cuda").manual_seed(seed)
# Load and process each intrinsic channel image
def process_image(file, **kwargs):
if file is None:
return None
if file.name.endswith(".exr"):
return load_exr_image(file.name, **kwargs).to("cuda")
elif file.name.endswith((".png", ".jpg", ".jpeg")):
return load_ldr_image(file.name, **kwargs).to("cuda")
return None
albedo_image = process_image(albedo, clamp=True)
normal_image = process_image(normal, normalize=True)
roughness_image = process_image(roughness, clamp=True)
metallic_image = process_image(metallic, clamp=True)
irradiance_image = process_image(irradiance, tonemaping=True, clamp=True)
# Set default height and width based on the first available image
height, width = 768, 768
for img in [
albedo_image,
normal_image,
roughness_image,
metallic_image,
irradiance_image,
]:
if img is not None:
height, width = img.shape[1], img.shape[2]
break
required_aovs = ["albedo", "normal", "roughness", "metallic", "irradiance"]
return_list = []
for i in range(num_samples):
generated_image = pipe(
prompt=prompt,
albedo=albedo_image,
normal=normal_image,
roughness=roughness_image,
metallic=metallic_image,
irradiance=irradiance_image,
num_inference_steps=inference_step,
height=height,
width=width,
generator=generator,
required_aovs=required_aovs,
guidance_scale=guidance_scale,
image_guidance_scale=image_guidance_scale,
guidance_rescale=0.7,
output_type="np",
).images[0] # type: ignore
return_list.append((generated_image, f"Generated Image {i}"))
# Append additional images to the output gallery
def post_process_image(img, **kwargs):
if img is not None:
return (img.cpu().numpy().transpose(1, 2, 0), kwargs.get("label", "Image"))
return np.zeros((height, width, 3))
return_list.extend(
[
post_process_image(albedo_image, label="Albedo"),
post_process_image(normal_image, label="Normal"),
post_process_image(roughness_image, label="Roughness"),
post_process_image(metallic_image, label="Metallic"),
post_process_image(irradiance_image, label="Irradiance"),
]
)
return return_list
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("## Model X -> RGB (Intrinsic channels -> realistic image)")
with gr.Row():
# Input side
with gr.Column():
gr.Markdown("### Given intrinsic channels")
albedo = gr.File(label="Albedo", file_types=[".exr", ".png", ".jpg"])
normal = gr.File(label="Normal", file_types=[".exr", ".png", ".jpg"])
roughness = gr.File(label="Roughness", file_types=[".exr", ".png", ".jpg"])
metallic = gr.File(label="Metallic", file_types=[".exr", ".png", ".jpg"])
irradiance = gr.File(
label="Irradiance", file_types=[".exr", ".png", ".jpg"]
)
gr.Markdown("### Parameters")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(value="Run")
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=-1,
maximum=2147483647,
step=1,
randomize=True,
)
inference_step = gr.Slider(
label="Inference Step",
minimum=1,
maximum=100,
step=1,
value=50,
)
num_samples = gr.Slider(
label="Samples",
minimum=1,
maximum=100,
step=1,
value=1,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
image_guidance_scale = gr.Slider(
label="Image Guidance Scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=1.5,
)
# Output side
with gr.Column():
gr.Markdown("### Output Gallery")
result_gallery = gr.Gallery(
label="Output",
show_label=False,
elem_id="gallery",
columns=2,
)
run_button.click(
fn=generate,
inputs=[
albedo,
normal,
roughness,
metallic,
irradiance,
prompt,
seed,
inference_step,
num_samples,
guidance_scale,
image_guidance_scale,
],
outputs=result_gallery,
queue=True,
)
if __name__ == "__main__":
demo.launch(debug=False, share=False, show_api=False)