|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
import torch.nn.functional as F |
|
from diffusers.configuration_utils import register_to_config |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( |
|
rescale_noise_cfg, |
|
) |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import CONFIG_NAME, BaseOutput, deprecate, logging, randn_tensor |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class VaeImageProcrssorAOV(VaeImageProcessor): |
|
""" |
|
Image processor for VAE AOV. |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. |
|
vae_scale_factor (`int`, *optional*, defaults to `8`): |
|
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. |
|
resample (`str`, *optional*, defaults to `lanczos`): |
|
Resampling filter to use when resizing the image. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the image to [-1,1]. |
|
""" |
|
|
|
config_name = CONFIG_NAME |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
vae_scale_factor: int = 8, |
|
resample: str = "lanczos", |
|
do_normalize: bool = True, |
|
): |
|
super().__init__() |
|
|
|
def postprocess( |
|
self, |
|
image: torch.FloatTensor, |
|
output_type: str = "pil", |
|
do_denormalize: Optional[List[bool]] = None, |
|
do_gamma_correction: bool = True, |
|
): |
|
if not isinstance(image, torch.Tensor): |
|
raise ValueError( |
|
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" |
|
) |
|
if output_type not in ["latent", "pt", "np", "pil"]: |
|
deprecation_message = ( |
|
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " |
|
"`pil`, `np`, `pt`, `latent`" |
|
) |
|
deprecate( |
|
"Unsupported output_type", |
|
"1.0.0", |
|
deprecation_message, |
|
standard_warn=False, |
|
) |
|
output_type = "np" |
|
|
|
if output_type == "latent": |
|
return image |
|
|
|
if do_denormalize is None: |
|
do_denormalize = [self.config.do_normalize] * image.shape[0] |
|
|
|
image = torch.stack( |
|
[ |
|
self.denormalize(image[i]) if do_denormalize[i] else image[i] |
|
for i in range(image.shape[0]) |
|
] |
|
) |
|
|
|
|
|
if do_gamma_correction: |
|
image = torch.pow(image, 1.0 / 2.2) |
|
|
|
if output_type == "pt": |
|
return image |
|
|
|
image = self.pt_to_numpy(image) |
|
|
|
if output_type == "np": |
|
return image |
|
|
|
if output_type == "pil": |
|
return self.numpy_to_pil(image) |
|
|
|
def preprocess_normal( |
|
self, |
|
image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray], |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
) -> torch.Tensor: |
|
image = torch.stack([image], axis=0) |
|
return image |
|
|
|
|
|
@dataclass |
|
class StableDiffusionAOVPipelineOutput(BaseOutput): |
|
""" |
|
Output class for Stable Diffusion AOV pipelines. |
|
|
|
Args: |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, |
|
num_channels)`. |
|
nsfw_content_detected (`List[bool]`) |
|
List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or |
|
`None` if safety checking could not be performed. |
|
""" |
|
|
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
predicted_x0_images: Optional[Union[List[PIL.Image.Image], np.ndarray]] = None |
|
|
|
|
|
class StableDiffusionAOVDropoutPipeline( |
|
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin |
|
): |
|
r""" |
|
Pipeline for AOVs. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcrssorAOV( |
|
vae_scale_factor=self.vae_scale_factor |
|
) |
|
self.register_to_config() |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_ prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer( |
|
prompt, padding="longest", return_tensors="pt" |
|
).input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[ |
|
-1 |
|
] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if ( |
|
hasattr(self.text_encoder.config, "use_attention_mask") |
|
and self.text_encoder.config.use_attention_mask |
|
): |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if ( |
|
hasattr(self.text_encoder.config, "use_attention_mask") |
|
and self.text_encoder.config.use_attention_mask |
|
): |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to( |
|
dtype=self.text_encoder.dtype, device=device |
|
) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat( |
|
1, num_images_per_prompt, 1 |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat( |
|
[prompt_embeds, negative_prompt_embeds, negative_prompt_embeds] |
|
) |
|
|
|
return prompt_embeds |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if (callback_steps is None) or ( |
|
callback_steps is not None |
|
and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and ( |
|
not isinstance(prompt, str) and not isinstance(prompt, list) |
|
): |
|
raise ValueError( |
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" |
|
) |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor( |
|
shape, generator=generator, device=device, dtype=dtype |
|
) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_image_latents( |
|
self, |
|
image, |
|
batch_size, |
|
num_images_per_prompt, |
|
dtype, |
|
device, |
|
do_classifier_free_guidance, |
|
generator=None, |
|
): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
if image.shape[1] == 4: |
|
image_latents = image |
|
else: |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if isinstance(generator, list): |
|
image_latents = [ |
|
self.vae.encode(image[i : i + 1]).latent_dist.mode() |
|
for i in range(batch_size) |
|
] |
|
image_latents = torch.cat(image_latents, dim=0) |
|
else: |
|
image_latents = self.vae.encode(image).latent_dist.mode() |
|
|
|
if ( |
|
batch_size > image_latents.shape[0] |
|
and batch_size % image_latents.shape[0] == 0 |
|
): |
|
|
|
deprecation_message = ( |
|
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" |
|
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" |
|
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" |
|
" your script to pass as many initial images as text prompts to suppress this warning." |
|
) |
|
deprecate( |
|
"len(prompt) != len(image)", |
|
"1.0.0", |
|
deprecation_message, |
|
standard_warn=False, |
|
) |
|
additional_image_per_prompt = batch_size // image_latents.shape[0] |
|
image_latents = torch.cat( |
|
[image_latents] * additional_image_per_prompt, dim=0 |
|
) |
|
elif ( |
|
batch_size > image_latents.shape[0] |
|
and batch_size % image_latents.shape[0] != 0 |
|
): |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
image_latents = torch.cat([image_latents], dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_image_latents = torch.zeros_like(image_latents) |
|
image_latents = torch.cat( |
|
[image_latents, image_latents, uncond_image_latents], dim=0 |
|
) |
|
|
|
return image_latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
height: int, |
|
width: int, |
|
prompt: Union[str, List[str]] = None, |
|
albedo: Optional[ |
|
Union[ |
|
torch.FloatTensor, |
|
PIL.Image.Image, |
|
np.ndarray, |
|
List[torch.FloatTensor], |
|
List[PIL.Image.Image], |
|
List[np.ndarray], |
|
] |
|
] = None, |
|
normal: Optional[ |
|
Union[ |
|
torch.FloatTensor, |
|
PIL.Image.Image, |
|
np.ndarray, |
|
List[torch.FloatTensor], |
|
List[PIL.Image.Image], |
|
List[np.ndarray], |
|
] |
|
] = None, |
|
roughness: Optional[ |
|
Union[ |
|
torch.FloatTensor, |
|
PIL.Image.Image, |
|
np.ndarray, |
|
List[torch.FloatTensor], |
|
List[PIL.Image.Image], |
|
List[np.ndarray], |
|
] |
|
] = None, |
|
metallic: Optional[ |
|
Union[ |
|
torch.FloatTensor, |
|
PIL.Image.Image, |
|
np.ndarray, |
|
List[torch.FloatTensor], |
|
List[PIL.Image.Image], |
|
List[np.ndarray], |
|
] |
|
] = None, |
|
irradiance: Optional[ |
|
Union[ |
|
torch.FloatTensor, |
|
PIL.Image.Image, |
|
np.ndarray, |
|
List[torch.FloatTensor], |
|
List[PIL.Image.Image], |
|
List[np.ndarray], |
|
] |
|
] = None, |
|
guidance_scale: float = 0.0, |
|
image_guidance_scale: float = 0.0, |
|
guidance_rescale: float = 0.0, |
|
num_inference_steps: int = 100, |
|
required_aovs: List[str] = ["albedo"], |
|
return_predicted_x0s: bool = False, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept |
|
image latents as `image`, but if passing latents directly it is not encoded again. |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
image_guidance_scale (`float`, *optional*, defaults to 1.5): |
|
Push the generated image towards the inital `image`. Image guidance scale is enabled by setting |
|
`image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely |
|
linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a |
|
value of at least `1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> import PIL |
|
>>> import requests |
|
>>> import torch |
|
>>> from io import BytesIO |
|
|
|
>>> from diffusers import StableDiffusionInstructPix2PixPipeline |
|
|
|
|
|
>>> def download_image(url): |
|
... response = requests.get(url) |
|
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
>>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" |
|
|
|
>>> image = download_image(img_url).resize((512, 512)) |
|
|
|
>>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( |
|
... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> prompt = "make the mountains snowy" |
|
>>> image = pipe(prompt=prompt, image=image).images[0] |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
self.check_inputs( |
|
prompt, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
do_classifier_free_guidance = ( |
|
guidance_scale >= 1.0 and image_guidance_scale >= 1.0 |
|
) |
|
|
|
scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas") |
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
|
|
|
|
preprocessed_aovs = {} |
|
for aov_name in required_aovs: |
|
if aov_name == "albedo": |
|
if albedo is not None: |
|
preprocessed_aovs[aov_name] = self.image_processor.preprocess( |
|
albedo |
|
) |
|
else: |
|
preprocessed_aovs[aov_name] = None |
|
|
|
if aov_name == "normal": |
|
if normal is not None: |
|
preprocessed_aovs[aov_name] = ( |
|
self.image_processor.preprocess_normal(normal) |
|
) |
|
else: |
|
preprocessed_aovs[aov_name] = None |
|
|
|
if aov_name == "roughness": |
|
if roughness is not None: |
|
preprocessed_aovs[aov_name] = self.image_processor.preprocess( |
|
roughness |
|
) |
|
else: |
|
preprocessed_aovs[aov_name] = None |
|
if aov_name == "metallic": |
|
if metallic is not None: |
|
preprocessed_aovs[aov_name] = self.image_processor.preprocess( |
|
metallic |
|
) |
|
else: |
|
preprocessed_aovs[aov_name] = None |
|
if aov_name == "irradiance": |
|
if irradiance is not None: |
|
preprocessed_aovs[aov_name] = self.image_processor.preprocess( |
|
irradiance |
|
) |
|
else: |
|
preprocessed_aovs[aov_name] = None |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
height_latent, width_latent = latents.shape[-2:] |
|
|
|
|
|
image_latents = [] |
|
|
|
scaling_factors = { |
|
"albedo": 0.17301377137652138, |
|
"normal": 0.17483895473058078, |
|
"roughness": 0.1680724853626448, |
|
"metallic": 0.13135013390855135, |
|
} |
|
for aov_name, aov in preprocessed_aovs.items(): |
|
if aov is None: |
|
image_latent = torch.zeros( |
|
batch_size, |
|
num_channels_latents, |
|
height_latent, |
|
width_latent, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
) |
|
if aov_name == "irradiance": |
|
image_latent = image_latent[:, 0:3] |
|
if do_classifier_free_guidance: |
|
image_latents.append( |
|
torch.cat([image_latent, image_latent, image_latent], dim=0) |
|
) |
|
else: |
|
image_latents.append(image_latent) |
|
else: |
|
if aov_name == "irradiance": |
|
image_latent = F.interpolate( |
|
aov.to(device=device, dtype=prompt_embeds.dtype), |
|
size=(height_latent, width_latent), |
|
mode="bilinear", |
|
align_corners=False, |
|
antialias=True, |
|
) |
|
if do_classifier_free_guidance: |
|
uncond_image_latent = torch.zeros_like(image_latent) |
|
image_latent = torch.cat( |
|
[image_latent, image_latent, uncond_image_latent], dim=0 |
|
) |
|
else: |
|
scaling_factor = scaling_factors[aov_name] |
|
image_latent = ( |
|
self.prepare_image_latents( |
|
aov, |
|
batch_size, |
|
num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
do_classifier_free_guidance, |
|
generator, |
|
) |
|
* scaling_factor |
|
) |
|
image_latents.append(image_latent) |
|
image_latents = torch.cat(image_latents, dim=1) |
|
|
|
|
|
num_channels_image = image_latents.shape[1] |
|
if num_channels_latents + num_channels_image != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_image`: {num_channels_image} " |
|
f" = {num_channels_latents+num_channels_image}. Please verify the config of" |
|
" `pipeline.unet` or your `image` input." |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
predicted_x0s = [] |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 3) if do_classifier_free_guidance else latents |
|
) |
|
|
|
|
|
scaled_latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
scaled_latent_model_input = torch.cat( |
|
[scaled_latent_model_input, image_latents], dim=1 |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
scaled_latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
( |
|
noise_pred_text, |
|
noise_pred_image, |
|
noise_pred_uncond, |
|
) = noise_pred.chunk(3) |
|
noise_pred = ( |
|
noise_pred_uncond |
|
+ guidance_scale * (noise_pred_text - noise_pred_image) |
|
+ image_guidance_scale * (noise_pred_image - noise_pred_uncond) |
|
) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg( |
|
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale |
|
) |
|
|
|
|
|
output = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs, return_dict=True |
|
) |
|
|
|
latents = output[0] |
|
|
|
if return_predicted_x0s: |
|
predicted_x0s.append(output[1]) |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode( |
|
latents / self.vae.config.scaling_factor, return_dict=False |
|
)[0] |
|
|
|
if return_predicted_x0s: |
|
predicted_x0_images = [ |
|
self.vae.decode( |
|
predicted_x0 / self.vae.config.scaling_factor, return_dict=False |
|
)[0] |
|
for predicted_x0 in predicted_x0s |
|
] |
|
else: |
|
image = latents |
|
predicted_x0_images = predicted_x0s |
|
|
|
do_denormalize = [True] * image.shape[0] |
|
|
|
image = self.image_processor.postprocess( |
|
image, output_type=output_type, do_denormalize=do_denormalize |
|
) |
|
|
|
if return_predicted_x0s: |
|
predicted_x0_images = [ |
|
self.image_processor.postprocess( |
|
predicted_x0_image, |
|
output_type=output_type, |
|
do_denormalize=do_denormalize, |
|
) |
|
for predicted_x0_image in predicted_x0_images |
|
] |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return image |
|
|
|
if return_predicted_x0s: |
|
return StableDiffusionAOVPipelineOutput( |
|
images=image, predicted_x0_images=predicted_x0_images |
|
) |
|
else: |
|
return StableDiffusionAOVPipelineOutput(images=image) |
|
|