import inspect from dataclasses import dataclass from typing import Callable, List, Optional, Union import numpy as np import PIL import torch import torch.nn.functional as F from diffusers.configuration_utils import register_to_config from diffusers.image_processor import VaeImageProcessor from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( rescale_noise_cfg, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import CONFIG_NAME, BaseOutput, deprecate, logging, randn_tensor from transformers import CLIPTextModel, CLIPTokenizer logger = logging.get_logger(__name__) class VaeImageProcrssorAOV(VaeImageProcessor): """ Image processor for VAE AOV. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. """ config_name = CONFIG_NAME @register_to_config def __init__( self, do_resize: bool = True, vae_scale_factor: int = 8, resample: str = "lanczos", do_normalize: bool = True, ): super().__init__() def postprocess( self, image: torch.FloatTensor, output_type: str = "pil", do_denormalize: Optional[List[bool]] = None, do_gamma_correction: bool = True, ): if not isinstance(image, torch.Tensor): raise ValueError( f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" ) if output_type not in ["latent", "pt", "np", "pil"]: deprecation_message = ( f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " "`pil`, `np`, `pt`, `latent`" ) deprecate( "Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False, ) output_type = "np" if output_type == "latent": return image if do_denormalize is None: do_denormalize = [self.config.do_normalize] * image.shape[0] image = torch.stack( [ self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0]) ] ) # Gamma correction if do_gamma_correction: image = torch.pow(image, 1.0 / 2.2) if output_type == "pt": return image image = self.pt_to_numpy(image) if output_type == "np": return image if output_type == "pil": return self.numpy_to_pil(image) def preprocess_normal( self, image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray], height: Optional[int] = None, width: Optional[int] = None, ) -> torch.Tensor: image = torch.stack([image], axis=0) return image @dataclass class StableDiffusionAOVPipelineOutput(BaseOutput): """ Output class for Stable Diffusion AOV pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. nsfw_content_detected (`List[bool]`) List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] predicted_x0_images: Optional[Union[List[PIL.Image.Image], np.ndarray]] = None class StableDiffusionAOVDropoutPipeline( DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin ): r""" Pipeline for AOVs. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcrssorAOV( vae_scale_factor=self.vae_scale_factor ) self.register_to_config() def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_ prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer( prompt, padding="longest", return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[ -1 ] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if ( hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask ): attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view( bs_embed * num_images_per_prompt, seq_len, -1 ) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if ( hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask ): attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to( dtype=self.text_encoder.dtype, device=device ) negative_prompt_embeds = negative_prompt_embeds.repeat( 1, num_images_per_prompt, 1 ) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_images_per_prompt, seq_len, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes # pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds] prompt_embeds = torch.cat( [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds] ) return prompt_embeds def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set( inspect.signature(self.scheduler.step).parameters.keys() ) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set( inspect.signature(self.scheduler.step).parameters.keys() ) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and ( not isinstance(prompt, str) and not isinstance(prompt, list) ): raise ValueError( f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): shape = ( batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor( shape, generator=generator, device=device, dtype=dtype ) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def prepare_image_latents( self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None, ): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: image_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if isinstance(generator, list): image_latents = [ self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size) ] image_latents = torch.cat(image_latents, dim=0) else: image_latents = self.vae.encode(image).latent_dist.mode() if ( batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0 ): # expand image_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate( "len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False, ) additional_image_per_prompt = batch_size // image_latents.shape[0] image_latents = torch.cat( [image_latents] * additional_image_per_prompt, dim=0 ) elif ( batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0 ): raise ValueError( f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." ) else: image_latents = torch.cat([image_latents], dim=0) if do_classifier_free_guidance: uncond_image_latents = torch.zeros_like(image_latents) image_latents = torch.cat( [image_latents, image_latents, uncond_image_latents], dim=0 ) return image_latents @torch.no_grad() def __call__( self, height: int, width: int, prompt: Union[str, List[str]] = None, albedo: Optional[ Union[ torch.FloatTensor, PIL.Image.Image, np.ndarray, List[torch.FloatTensor], List[PIL.Image.Image], List[np.ndarray], ] ] = None, normal: Optional[ Union[ torch.FloatTensor, PIL.Image.Image, np.ndarray, List[torch.FloatTensor], List[PIL.Image.Image], List[np.ndarray], ] ] = None, roughness: Optional[ Union[ torch.FloatTensor, PIL.Image.Image, np.ndarray, List[torch.FloatTensor], List[PIL.Image.Image], List[np.ndarray], ] ] = None, metallic: Optional[ Union[ torch.FloatTensor, PIL.Image.Image, np.ndarray, List[torch.FloatTensor], List[PIL.Image.Image], List[np.ndarray], ] ] = None, irradiance: Optional[ Union[ torch.FloatTensor, PIL.Image.Image, np.ndarray, List[torch.FloatTensor], List[PIL.Image.Image], List[np.ndarray], ] ] = None, guidance_scale: float = 0.0, image_guidance_scale: float = 0.0, guidance_rescale: float = 0.0, num_inference_steps: int = 100, required_aovs: List[str] = ["albedo"], return_predicted_x0s: bool = False, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept image latents as `image`, but if passing latents directly it is not encoded again. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. image_guidance_scale (`float`, *optional*, defaults to 1.5): Push the generated image towards the inital `image`. Image guidance scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a value of at least `1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> import PIL >>> import requests >>> import torch >>> from io import BytesIO >>> from diffusers import StableDiffusionInstructPix2PixPipeline >>> def download_image(url): ... response = requests.get(url) ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") >>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" >>> image = download_image(img_url).resize((512, 512)) >>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( ... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> prompt = "make the mountains snowy" >>> image = pipe(prompt=prompt, image=image).images[0] ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Check inputs self.check_inputs( prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 1. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device do_classifier_free_guidance = ( guidance_scale >= 1.0 and image_guidance_scale >= 1.0 ) # check if scheduler is in sigmas space scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas") # 2. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # 3. Preprocess image # For normal, the preprocessing does nothing # For others, the preprocessing remap the values to [-1, 1] preprocessed_aovs = {} for aov_name in required_aovs: if aov_name == "albedo": if albedo is not None: preprocessed_aovs[aov_name] = self.image_processor.preprocess( albedo ) else: preprocessed_aovs[aov_name] = None if aov_name == "normal": if normal is not None: preprocessed_aovs[aov_name] = ( self.image_processor.preprocess_normal(normal) ) else: preprocessed_aovs[aov_name] = None if aov_name == "roughness": if roughness is not None: preprocessed_aovs[aov_name] = self.image_processor.preprocess( roughness ) else: preprocessed_aovs[aov_name] = None if aov_name == "metallic": if metallic is not None: preprocessed_aovs[aov_name] = self.image_processor.preprocess( metallic ) else: preprocessed_aovs[aov_name] = None if aov_name == "irradiance": if irradiance is not None: preprocessed_aovs[aov_name] = self.image_processor.preprocess( irradiance ) else: preprocessed_aovs[aov_name] = None # 4. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.vae.config.latent_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) height_latent, width_latent = latents.shape[-2:] # 6. Prepare Image latents image_latents = [] # Magicial scaling factors for each AOV (calculated from the training data) scaling_factors = { "albedo": 0.17301377137652138, "normal": 0.17483895473058078, "roughness": 0.1680724853626448, "metallic": 0.13135013390855135, } for aov_name, aov in preprocessed_aovs.items(): if aov is None: image_latent = torch.zeros( batch_size, num_channels_latents, height_latent, width_latent, dtype=prompt_embeds.dtype, device=device, ) if aov_name == "irradiance": image_latent = image_latent[:, 0:3] if do_classifier_free_guidance: image_latents.append( torch.cat([image_latent, image_latent, image_latent], dim=0) ) else: image_latents.append(image_latent) else: if aov_name == "irradiance": image_latent = F.interpolate( aov.to(device=device, dtype=prompt_embeds.dtype), size=(height_latent, width_latent), mode="bilinear", align_corners=False, antialias=True, ) if do_classifier_free_guidance: uncond_image_latent = torch.zeros_like(image_latent) image_latent = torch.cat( [image_latent, image_latent, uncond_image_latent], dim=0 ) else: scaling_factor = scaling_factors[aov_name] image_latent = ( self.prepare_image_latents( aov, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, do_classifier_free_guidance, generator, ) * scaling_factor ) image_latents.append(image_latent) image_latents = torch.cat(image_latents, dim=1) # 7. Check that shapes of latents and image match the UNet channels num_channels_image = image_latents.shape[1] if num_channels_latents + num_channels_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents+num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) predicted_x0s = [] # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Expand the latents if we are doing classifier free guidance. # The latents are expanded 3 times because for pix2pix the guidance\ # is applied for both the text and the input image. latent_model_input = ( torch.cat([latents] * 3) if do_classifier_free_guidance else latents ) # concat latents, image_latents in the channel dimension scaled_latent_model_input = self.scheduler.scale_model_input( latent_model_input, t ) scaled_latent_model_input = torch.cat( [scaled_latent_model_input, image_latents], dim=1 ) # predict the noise residual noise_pred = self.unet( scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: ( noise_pred_text, noise_pred_image, noise_pred_uncond, ) = noise_pred.chunk(3) noise_pred = ( noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_image) + image_guidance_scale * (noise_pred_image - noise_pred_uncond) ) if do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg( noise_pred, noise_pred_text, guidance_rescale=guidance_rescale ) # compute the previous noisy sample x_t -> x_t-1 output = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs, return_dict=True ) latents = output[0] if return_predicted_x0s: predicted_x0s.append(output[1]) # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) if not output_type == "latent": image = self.vae.decode( latents / self.vae.config.scaling_factor, return_dict=False )[0] if return_predicted_x0s: predicted_x0_images = [ self.vae.decode( predicted_x0 / self.vae.config.scaling_factor, return_dict=False )[0] for predicted_x0 in predicted_x0s ] else: image = latents predicted_x0_images = predicted_x0s do_denormalize = [True] * image.shape[0] image = self.image_processor.postprocess( image, output_type=output_type, do_denormalize=do_denormalize ) if return_predicted_x0s: predicted_x0_images = [ self.image_processor.postprocess( predicted_x0_image, output_type=output_type, do_denormalize=do_denormalize, ) for predicted_x0_image in predicted_x0_images ] # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return image if return_predicted_x0s: return StableDiffusionAOVPipelineOutput( images=image, predicted_x0_images=predicted_x0_images ) else: return StableDiffusionAOVPipelineOutput(images=image)