blazingbunny commited on
Commit
28f3fdc
·
verified ·
1 Parent(s): 4242bf4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -3,7 +3,8 @@ import torch
3
  from transformers import BertModel, BertTokenizer
4
 
5
  # Load pre-trained BERT model and tokenizer (do this outside the main loop for efficiency)
6
- @st.cache_resource # Cache the model for faster subsequent runs
 
7
  def load_bert():
8
  tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
9
  model = BertModel.from_pretrained('bert-base-uncased')
@@ -11,6 +12,7 @@ def load_bert():
11
 
12
  tokenizer, model = load_bert()
13
 
 
14
  def calculate_similarity(word1, word2):
15
  # Tokenize and get embeddings
16
  input_ids1 = torch.tensor([tokenizer.encode(word1, add_special_tokens=True)])
@@ -26,12 +28,14 @@ def calculate_similarity(word1, word2):
26
  # Streamlit interface
27
  st.title("Word Similarity Checker")
28
 
29
- word1 = st.text_input("Enter the first word:")
30
- word2 = st.text_input("Enter the second word:")
31
 
32
- if st.button("Check Similarity"):
33
- if word1 and word2:
34
- similarity = calculate_similarity(word1, word2)
35
- st.write(f"Similarity between '{word1}' and '{word2}': {similarity:.4f}")
 
 
36
  else:
37
- st.warning("Please enter both words.")
 
3
  from transformers import BertModel, BertTokenizer
4
 
5
  # Load pre-trained BERT model and tokenizer (do this outside the main loop for efficiency)
6
+ # Load pre-trained BERT model and tokenizer
7
+ @st.cache_resource
8
  def load_bert():
9
  tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
10
  model = BertModel.from_pretrained('bert-base-uncased')
 
12
 
13
  tokenizer, model = load_bert()
14
 
15
+ def calculate_similarity(word1, word2):
16
  def calculate_similarity(word1, word2):
17
  # Tokenize and get embeddings
18
  input_ids1 = torch.tensor([tokenizer.encode(word1, add_special_tokens=True)])
 
28
  # Streamlit interface
29
  st.title("Word Similarity Checker")
30
 
31
+ reference_word = st.text_input("Enter the reference word:")
32
+ word_list = st.text_area("Enter a list of words (one word per line):")
33
 
34
+ if st.button("Analyze"):
35
+ if reference_word and word_list:
36
+ words = word_list.splitlines()
37
+ for word in words:
38
+ similarity = calculate_similarity(reference_word, word)
39
+ st.write(f"Similarity between '{reference_word}' and '{word}': {similarity:.4f}")
40
  else:
41
+ st.warning("Please enter a reference word and a list of words.")