Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,8 @@ import torch
|
|
3 |
from transformers import BertModel, BertTokenizer
|
4 |
|
5 |
# Load pre-trained BERT model and tokenizer (do this outside the main loop for efficiency)
|
6 |
-
|
|
|
7 |
def load_bert():
|
8 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
9 |
model = BertModel.from_pretrained('bert-base-uncased')
|
@@ -11,6 +12,7 @@ def load_bert():
|
|
11 |
|
12 |
tokenizer, model = load_bert()
|
13 |
|
|
|
14 |
def calculate_similarity(word1, word2):
|
15 |
# Tokenize and get embeddings
|
16 |
input_ids1 = torch.tensor([tokenizer.encode(word1, add_special_tokens=True)])
|
@@ -26,12 +28,14 @@ def calculate_similarity(word1, word2):
|
|
26 |
# Streamlit interface
|
27 |
st.title("Word Similarity Checker")
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
if st.button("
|
33 |
-
if
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
else:
|
37 |
-
st.warning("Please enter
|
|
|
3 |
from transformers import BertModel, BertTokenizer
|
4 |
|
5 |
# Load pre-trained BERT model and tokenizer (do this outside the main loop for efficiency)
|
6 |
+
# Load pre-trained BERT model and tokenizer
|
7 |
+
@st.cache_resource
|
8 |
def load_bert():
|
9 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
10 |
model = BertModel.from_pretrained('bert-base-uncased')
|
|
|
12 |
|
13 |
tokenizer, model = load_bert()
|
14 |
|
15 |
+
def calculate_similarity(word1, word2):
|
16 |
def calculate_similarity(word1, word2):
|
17 |
# Tokenize and get embeddings
|
18 |
input_ids1 = torch.tensor([tokenizer.encode(word1, add_special_tokens=True)])
|
|
|
28 |
# Streamlit interface
|
29 |
st.title("Word Similarity Checker")
|
30 |
|
31 |
+
reference_word = st.text_input("Enter the reference word:")
|
32 |
+
word_list = st.text_area("Enter a list of words (one word per line):")
|
33 |
|
34 |
+
if st.button("Analyze"):
|
35 |
+
if reference_word and word_list:
|
36 |
+
words = word_list.splitlines()
|
37 |
+
for word in words:
|
38 |
+
similarity = calculate_similarity(reference_word, word)
|
39 |
+
st.write(f"Similarity between '{reference_word}' and '{word}': {similarity:.4f}")
|
40 |
else:
|
41 |
+
st.warning("Please enter a reference word and a list of words.")
|