import streamlit as st import torch from sentence_transformers import SentenceTransformer # Load SBERT model (choose a suitable model from https://www.sbert.net/docs/pretrained_models.html) @st.cache_resource def load_sbert(): model = SentenceTransformer('all-MiniLM-L6-v2') # Example model return model model = load_sbert() def calculate_similarity(word1, word2): embeddings1 = model.encode(word1) embeddings2 = model.encode(word2) # Convert NumPy arrays to tensors embeddings1 = torch.tensor(embeddings1) embeddings2 = torch.tensor(embeddings2) cos_sim = torch.nn.functional.cosine_similarity(embeddings1, embeddings2, dim=0) return cos_sim.item() # Streamlit interface st.title("Word Similarity Checker") reference_word = st.text_input("Enter the reference word:") word_list = st.text_area("Enter a list of words (one word per line):") if st.button("Analyze"): if reference_word and word_list: words = word_list.splitlines() for word in words: similarity = calculate_similarity(reference_word, word) st.write(f"Similarity between '{reference_word}' and '{word}': {similarity:.4f}") else: st.warning("Please enter a reference word and a list of words.")