|
import streamlit as st |
|
from google.cloud import language_v1 |
|
from google.oauth2 import service_account |
|
|
|
def print_result(annotations): |
|
score = annotations.document_sentiment.score |
|
magnitude = annotations.document_sentiment.magnitude |
|
|
|
for index, sentence in enumerate(annotations.sentences): |
|
sentence_sentiment = sentence.sentiment.score |
|
st.write(f"Sentence {index} has a sentiment score of {sentence_sentiment}") |
|
|
|
st.write(f"Overall Sentiment: score of {score} with magnitude of {magnitude}") |
|
|
|
def analyze_sentiment(texts): |
|
|
|
credentials_info = st.secrets["GOOGLE_APPLICATION_CREDENTIALS"] |
|
credentials = service_account.Credentials.from_service_account_info(credentials_info) |
|
|
|
client = language_v1.LanguageServiceClient(credentials=credentials) |
|
|
|
document = language_v1.Document(content=texts, type_=language_v1.Document.Type.PLAIN_TEXT) |
|
annotations = client.analyze_sentiment(request={"document": document}) |
|
|
|
return annotations |
|
|
|
st.title("Sentiment Analysis App") |
|
st.write("Enter some text to analyze its sentiment:") |
|
|
|
text_input = st.text_area("Text to analyze", height=200) |
|
|
|
if st.button("Analyze Sentiment"): |
|
if text_input: |
|
annotations = analyze_sentiment(text_input) |
|
print_result(annotations) |
|
else: |
|
st.warning("Please enter some text.") |
|
|