Commit
·
5d6c700
1
Parent(s):
bfab817
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import streamlit as st
|
3 |
+
from google.oauth2 import service_account
|
4 |
+
from google.cloud import language_v1
|
5 |
+
|
6 |
+
# Sidebar content
|
7 |
+
st.sidebar.title("About This Tool")
|
8 |
+
st.sidebar.markdown("### Descriptive Introduction")
|
9 |
+
st.sidebar.markdown("This tool leverages Google's NLP technology for text classification.")
|
10 |
+
st.sidebar.markdown("### Step-by-Step Guide")
|
11 |
+
st.sidebar.markdown("""
|
12 |
+
1. **Open the Tool**: Navigate to the URL where the tool is hosted.
|
13 |
+
2. **User Input**: Enter the text you want to classify.
|
14 |
+
3. **Analyze**: Click the 'Analyze' button.
|
15 |
+
4. **View Results**: See the classified categories and their confidence scores.
|
16 |
+
""")
|
17 |
+
|
18 |
+
# Header and intro
|
19 |
+
st.title("Google Cloud NLP Text Classifier")
|
20 |
+
st.write("This tool classifies text into predefined categories.")
|
21 |
+
|
22 |
+
def sample_classify_text(text_content):
|
23 |
+
# Assuming service_account_info is set in your Streamlit secrets
|
24 |
+
service_account_info = json.loads(st.secrets["google_nlp"])
|
25 |
+
credentials = service_account.Credentials.from_service_account_info(
|
26 |
+
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
|
27 |
+
)
|
28 |
+
|
29 |
+
client = language_v1.LanguageServiceClient(credentials=credentials)
|
30 |
+
document = {"content": text_content, "type_": language_v1.Document.Type.PLAIN_TEXT, "language": "en"}
|
31 |
+
|
32 |
+
content_categories_version = (
|
33 |
+
language_v1.ClassificationModelOptions.V2Model.ContentCategoriesVersion.V2
|
34 |
+
)
|
35 |
+
response = client.classify_text(
|
36 |
+
request={
|
37 |
+
"document": document,
|
38 |
+
"classification_model_options": {
|
39 |
+
"v2_model": {"content_categories_version": content_categories_version}
|
40 |
+
},
|
41 |
+
}
|
42 |
+
)
|
43 |
+
|
44 |
+
st.write(f"### We found {len(response.categories)} categories")
|
45 |
+
st.write("---")
|
46 |
+
|
47 |
+
for category in response.categories:
|
48 |
+
st.write(f"Category Name: {category.name}")
|
49 |
+
st.write(f"Confidence Score: {category.confidence}")
|
50 |
+
st.write("---")
|
51 |
+
|
52 |
+
# User input for text analysis
|
53 |
+
user_input = st.text_area("Enter text to classify", max_chars=2500)
|
54 |
+
|
55 |
+
if st.button("Analyze"):
|
56 |
+
if user_input:
|
57 |
+
sample_classify_text(user_input)
|