blazingbunny commited on
Commit
5d6c700
·
1 Parent(s): bfab817

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import streamlit as st
3
+ from google.oauth2 import service_account
4
+ from google.cloud import language_v1
5
+
6
+ # Sidebar content
7
+ st.sidebar.title("About This Tool")
8
+ st.sidebar.markdown("### Descriptive Introduction")
9
+ st.sidebar.markdown("This tool leverages Google's NLP technology for text classification.")
10
+ st.sidebar.markdown("### Step-by-Step Guide")
11
+ st.sidebar.markdown("""
12
+ 1. **Open the Tool**: Navigate to the URL where the tool is hosted.
13
+ 2. **User Input**: Enter the text you want to classify.
14
+ 3. **Analyze**: Click the 'Analyze' button.
15
+ 4. **View Results**: See the classified categories and their confidence scores.
16
+ """)
17
+
18
+ # Header and intro
19
+ st.title("Google Cloud NLP Text Classifier")
20
+ st.write("This tool classifies text into predefined categories.")
21
+
22
+ def sample_classify_text(text_content):
23
+ # Assuming service_account_info is set in your Streamlit secrets
24
+ service_account_info = json.loads(st.secrets["google_nlp"])
25
+ credentials = service_account.Credentials.from_service_account_info(
26
+ service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
27
+ )
28
+
29
+ client = language_v1.LanguageServiceClient(credentials=credentials)
30
+ document = {"content": text_content, "type_": language_v1.Document.Type.PLAIN_TEXT, "language": "en"}
31
+
32
+ content_categories_version = (
33
+ language_v1.ClassificationModelOptions.V2Model.ContentCategoriesVersion.V2
34
+ )
35
+ response = client.classify_text(
36
+ request={
37
+ "document": document,
38
+ "classification_model_options": {
39
+ "v2_model": {"content_categories_version": content_categories_version}
40
+ },
41
+ }
42
+ )
43
+
44
+ st.write(f"### We found {len(response.categories)} categories")
45
+ st.write("---")
46
+
47
+ for category in response.categories:
48
+ st.write(f"Category Name: {category.name}")
49
+ st.write(f"Confidence Score: {category.confidence}")
50
+ st.write("---")
51
+
52
+ # User input for text analysis
53
+ user_input = st.text_area("Enter text to classify", max_chars=2500)
54
+
55
+ if st.button("Analyze"):
56
+ if user_input:
57
+ sample_classify_text(user_input)