File size: 2,925 Bytes
564ce0c 569a26f 564ce0c 3fec030 c077e58 170f624 c077e58 170f624 c077e58 f63dcc6 3fec030 170f624 c077e58 170f624 c077e58 170f624 c077e58 3fec030 c077e58 3fec030 170f624 bc4e0d2 170f624 d57d7e1 170f624 c077e58 170f624 d57d7e1 170f624 f66f708 c2b8ffb 309b488 569a26f c2b8ffb 170f624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1
# Function to count entities with 'mid' and '/g/' in their metadata
def count_entities(entities):
count = 0
for entity in entities:
metadata = entity.metadata
if 'mid' in metadata and '/g/' in metadata['mid']:
count += 1
return count
# Sidebar content
st.sidebar.title("About This Tool")
st.sidebar.markdown("This tool leverages Google's NLP technology for entity analysis.")
st.sidebar.markdown("### Step-by-Step Guide")
st.sidebar.markdown("""
1. **Open the Tool**: Navigate to the URL where the tool is hosted.
2. **User Input**: Enter the text you want to analyze.
3. **Analyze**: Click the 'Analyze' button.
4. **View Results**: See the identified entities and their details.
""")
# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("This tool analyzes text to identify entities such as people, locations, organizations, and events")
st.write("Entity salience scores are always relative to the analysed text. In natural language processing, a salience score is always a prediction of what a human would consider to be the most important entities in the same text. A number of textual features contribute to the salience score.")
def sample_analyze_entities(text_content):
service_account_info = json.loads(st.secrets["google_nlp"])
credentials = service_account.Credentials.from_service_account_info(
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
client = language_v1.LanguageServiceClient(credentials=credentials)
document = {"content": text_content, "type_": language_v1.Document.Type.PLAIN_TEXT, "language": "en"}
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
# Count the entities with 'mid' and '/g/' in their metadata
entity_count = count_entities(response.entities)
st.write(f"We found {len(response.entities)} entities - {entity_count} meet your criteria")
st.write("---")
for i, entity in enumerate(response.entities):
st.write(f"Entity {i+1} of {len(response.entities)}")
st.write(f"Name: {entity.name}")
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}")
st.write(f"Salience Score: {entity.salience}")
if entity.metadata:
st.write("Metadata:")
st.write(entity.metadata)
if entity.mentions:
st.write("Mentions:")
st.write(', '.join([mention.text.content for mention in entity.mentions]))
st.write("---")
# User input for text analysis
user_input = st.text_area("Enter text to analyze", max_chars=5000)
if st.button("Analyze"):
if user_input:
sample_analyze_entities(user_input)
|