|
import streamlit as st |
|
from google.cloud import language_v1 |
|
import json |
|
from google.oauth2 import service_account |
|
import os |
|
from google.oauth2 import service_account |
|
from google.cloud import language_v1 |
|
|
|
def sample_analyze_entities(text_content): |
|
|
|
service_account_info = json.loads(st.secrets["google_nlp"]["credentials"]) |
|
|
|
|
|
credentials = service_account.Credentials.from_service_account_info( |
|
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"] |
|
) |
|
|
|
|
|
client = language_v1.LanguageServiceClient(credentials=credentials) |
|
|
|
|
|
|
|
client = language_v1.LanguageServiceClient() |
|
|
|
type_ = language_v1.Document.Type.PLAIN_TEXT |
|
language = "en" |
|
document = {"content": text_content, "type_": type_, "language": language} |
|
encoding_type = language_v1.EncodingType.UTF8 |
|
|
|
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type}) |
|
|
|
for entity in response.entities: |
|
st.write(f"Representative name for the entity: {entity.name}") |
|
st.write(f"Entity type: {language_v1.Entity.Type(entity.type_).name}") |
|
st.write(f"Salience score: {entity.salience}") |
|
|
|
for metadata_name, metadata_value in entity.metadata.items(): |
|
st.write(f"{metadata_name}: {metadata_value}") |
|
|
|
for mention in entity.mentions: |
|
st.write(f"Mention text: {mention.text.content}") |
|
st.write(f"Mention type: {language_v1.EntityMention.Type(mention.type_).name}") |
|
|
|
st.write(f"Language of the text: {response.language}") |
|
|
|
|
|
st.title('Google Cloud NLP Entity Analyzer') |
|
user_input = st.text_area('Enter text to analyze', '') |
|
|
|
if st.button('Analyze'): |
|
if user_input: |
|
sample_analyze_entities(user_input) |
|
|