|
import json |
|
import streamlit as st |
|
from google.oauth2 import service_account |
|
from google.cloud import language_v1 |
|
|
|
selected_types = st.multiselect('Select entity types to show:', entity_types_to_show) |
|
|
|
|
|
st.title("Google Cloud NLP Entity Analyzer") |
|
st.write("## Introduction to the Knowledge Graph API") |
|
st.write("---") |
|
st.write(""" |
|
The Google Knowledge Graph API reveals entity information related to a keyword, that Google knows about. |
|
This information can be very useful for SEO β discovering related topics and what Google believes is relevant. |
|
It can also help when trying to claim/win a Knowledge Graph box on search results. |
|
The API requires a high level of technical understanding, so this tool creates a simple public interface, with the ability to export data into spreadsheets. |
|
""") |
|
|
|
def sample_analyze_entities(text_content, your_query=""): |
|
service_account_info = json.loads(st.secrets["google_nlp"]) |
|
credentials = service_account.Credentials.from_service_account_info( |
|
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"] |
|
) |
|
client = language_v1.LanguageServiceClient(credentials=credentials) |
|
type_ = language_v1.Document.Type.PLAIN_TEXT |
|
language = "en" |
|
document = {"content": text_content, "type_": type_, "language": language} |
|
encoding_type = language_v1.EncodingType.UTF8 |
|
|
|
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type}) |
|
|
|
entities_list = [] |
|
for entity in response.entities: |
|
entity_type_name = language_v1.Entity.Type(entity.type_).name |
|
if entity_type_name in ["PERSON", "LOCATION", "ORGANIZATION", "EVENT"]: |
|
entity_details = { |
|
"Name": entity.name, |
|
"Type": entity_type_name, |
|
"Salience Score": entity.salience, |
|
"Metadata": entity.metadata, |
|
"Mentions": [mention.text.content for mention in entity.mentions] |
|
} |
|
entities_list.append(entity_details) |
|
|
|
if your_query: |
|
st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**") |
|
else: |
|
st.write("### We found results for your query") |
|
|
|
st.write("----") |
|
for i, entity in enumerate(entities_list): |
|
st.write(f"Relevance Score: {entity.get('Salience Score', 'N/A')} \t {i+1} of {len(entities_list)}") |
|
for key, value in entity.items(): |
|
if value: |
|
st.write(f"**{key}:**") |
|
st.write(value) |
|
st.write("----") |
|
|
|
st.write(f"### Language of the text: {response.language}") |
|
|
|
|
|
user_input = st.text_area("Enter text to analyze") |
|
your_query = st.text_input("Enter your query (optional)") |
|
|
|
if st.button("Analyze"): |
|
sample_analyze_entities(user_input, your_query) |
|
|