|
import json |
|
import streamlit as st |
|
from google.oauth2 import service_account |
|
from google.cloud import language_v1 |
|
import pandas as pd |
|
|
|
|
|
def query_knowledge_graph(entity_id): |
|
try: |
|
google_search_link = f"https://www.google.com/search?kgmid={entity_id}" |
|
st.markdown(f'[Open in Google Search]({google_search_link})', unsafe_allow_html=True) |
|
except Exception as e: |
|
st.write(f"An error occurred: {e}") |
|
|
|
|
|
def serialize_entity_metadata(metadata): |
|
return {k: str(v) for k, v in metadata.items()} |
|
|
|
|
|
def count_google_entities(entities): |
|
return sum( |
|
1 for entity in entities |
|
if 'mid' in entity.metadata and ('/g/' in entity.metadata['mid'] or '/m/' in entity.metadata['mid']) |
|
) |
|
|
|
|
|
def export_entities(entities): |
|
entity_list = [] |
|
for entity in entities: |
|
metadata = serialize_entity_metadata(entity.metadata) if entity.metadata else {} |
|
mid = metadata.get('mid', '') |
|
entity_info = { |
|
"Name": entity.name, |
|
"Type": language_v1.Entity.Type(entity.type_).name, |
|
"Salience Score": entity.salience, |
|
"MID": mid, |
|
"Metadata": metadata, |
|
"Mentions": [mention.text.content for mention in entity.mentions] |
|
} |
|
entity_list.append(entity_info) |
|
|
|
if not entity_list: |
|
st.write("No entities found to export.") |
|
return |
|
|
|
df = pd.DataFrame(entity_list) |
|
st.download_button(label="Export Entities as CSV", data=df.to_csv(index=False), file_name="entities.csv", mime="text/csv") |
|
|
|
json_data = json.dumps(entity_list, indent=2) |
|
st.download_button(label="Export Entities as JSON", data=json_data, file_name="entities.json", mime="application/json") |
|
|
|
|
|
st.sidebar.title("About This Tool") |
|
st.sidebar.markdown("This tool uses Google Cloud Natural Language API to identify entities.") |
|
st.sidebar.markdown("### How to Use") |
|
st.sidebar.markdown(""" |
|
1. **Enter text** in the box below. |
|
2. **Click Analyze** to detect entities. |
|
3. **Export** results to CSV or JSON. |
|
""") |
|
|
|
|
|
st.title("Google Cloud NLP Entity Analyzer") |
|
st.write("Analyze text and extract all entities, including those without Google metadata (MID).") |
|
|
|
|
|
def analyze_entities(text_content): |
|
service_account_info = json.loads(st.secrets["google_nlp"]) |
|
credentials = service_account.Credentials.from_service_account_info( |
|
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"] |
|
) |
|
|
|
client = language_v1.LanguageServiceClient(credentials=credentials) |
|
document = {"content": text_content, "type_": language_v1.Document.Type.PLAIN_TEXT, "language": "en"} |
|
encoding_type = language_v1.EncodingType.UTF8 |
|
|
|
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type}) |
|
entities = response.entities |
|
|
|
total_entities = len(entities) |
|
google_entities = count_google_entities(entities) |
|
|
|
if google_entities == 0: |
|
st.markdown(f"### Found {total_entities} entities β no Google-linked (MID) entities found.") |
|
else: |
|
st.markdown(f"### Found {total_entities} entities β {google_entities} Google-linked entities with MID.") |
|
|
|
st.write("---") |
|
|
|
for i, entity in enumerate(entities): |
|
st.write(f"**Entity {i+1} of {total_entities}**") |
|
st.write(f"**Name:** {entity.name}") |
|
st.write(f"**Type:** {language_v1.Entity.Type(entity.type_).name}") |
|
st.write(f"**Salience Score:** {entity.salience:.4f}") |
|
|
|
if entity.metadata: |
|
st.write("**Metadata:**") |
|
st.json(entity.metadata) |
|
|
|
if 'mid' in entity.metadata and ('/g/' in entity.metadata['mid'] or '/m/' in entity.metadata['mid']): |
|
query_knowledge_graph(entity.metadata['mid']) |
|
else: |
|
st.write("_No metadata available_") |
|
|
|
if entity.mentions: |
|
st.write(f"**Mentions ({len(entity.mentions)}):**") |
|
st.write([mention.text.content for mention in entity.mentions]) |
|
|
|
st.write("---") |
|
|
|
export_entities(entities) |
|
|
|
|
|
user_input = st.text_area("Enter text to analyze") |
|
|
|
if st.button("Analyze"): |
|
if user_input.strip(): |
|
analyze_entities(user_input) |
|
else: |
|
st.warning("Please enter some text before clicking Analyze.") |
|
|