|
import json |
|
import streamlit as st |
|
from google.oauth2 import service_account |
|
from google.cloud import language_v1 |
|
|
|
|
|
|
|
def sample_analyze_entities(text_content, your_query=""): |
|
|
|
|
|
entities_list = [] |
|
for entity in response.entities: |
|
entity_details = { |
|
"Name": entity.name, |
|
"Type": language_v1.Entity.Type(entity.type_).name, |
|
"Salience Score": entity.salience, |
|
"Metadata": entity.metadata, |
|
"Mentions": [mention.text.content for mention in entity.mentions] |
|
} |
|
entities_list.append(entity_details) |
|
|
|
if your_query: |
|
st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**") |
|
else: |
|
st.write("### We found results for your query") |
|
|
|
st.write("----") |
|
|
|
st.write("----") |
|
for i, entity in enumerate(entities_list): |
|
st.write(f"Entity {i+1} of {len(entities_list)}") |
|
st.write(f"Relevance Score: {round(entity.get('Salience Score', 0) * 100)}%") |
|
st.write(f"Name: {entity.get('Name', 'N/A')}") |
|
st.write(f"Type: {entity.get('Type', 'N/A')}") |
|
st.write(f"Salience Score: {entity.get('Salience Score', 'N/A')}") |
|
|
|
metadata = entity.get('Metadata', {}) |
|
if metadata: |
|
st.write("Metadata:") |
|
st.write(metadata) |
|
|
|
mentions = entity.get('Mentions', []) |
|
if mentions: |
|
st.write("Mentions:") |
|
st.write(', '.join(mentions)) |
|
|
|
st.write("----") |
|
|
|
|
|
st.write(f"### Language of the text: {response.language}") |
|
|
|
|
|
user_input = st.text_area("Enter text to analyze") |
|
your_query = st.text_input("Enter your query (optional)") |
|
|
|
if st.button("Analyze"): |
|
sample_analyze_entities(user_input, your_query) |
|
|