Spaces:
Sleeping
Sleeping
import json | |
import streamlit as st | |
from google.oauth2 import service_account | |
from google.cloud import language_v1 | |
import urllib.parse | |
import urllib.request | |
import pandas as pd | |
# Function to query Google's Knowledge Graph API | |
def query_knowledge_graph(entity_id): | |
try: | |
google_search_link = f"https://www.google.com/search?kgmid={entity_id}" | |
st.markdown(f'[Open in Google Search]({google_search_link})', unsafe_allow_html=True) | |
except Exception as e: | |
st.write(f"An error occurred: {e}") | |
# Function to count entities with 'mid' that contains '/g/' or '/m/' in their metadata | |
def count_entities(entities): | |
count = 0 | |
for entity in entities: | |
metadata = entity.metadata | |
if 'mid' in metadata and ('/g/' in metadata['mid'] or '/m/' in metadata['mid']): | |
count += 1 | |
return count | |
# Function to serialize entity metadata | |
def serialize_entity_metadata(metadata): | |
return {k: str(v) for k, v in metadata.items()} | |
# Function to export entities as a JSON or CSV file, only exporting entities with 'mid' in their metadata | |
def export_entities(entities): | |
entity_list = [] | |
for entity in entities: | |
# Check if entity has 'mid' in its metadata and if it contains '/g/' or '/m/' in 'mid' | |
if 'mid' in entity.metadata and ('/g/' in entity.metadata['mid'] or '/m/' in entity.metadata['mid']): | |
entity_info = { | |
"Name": entity.name, | |
"Type": language_v1.Entity.Type(entity.type_).name, | |
"Salience Score": entity.salience, | |
"Metadata": serialize_entity_metadata(entity.metadata), | |
"Mentions": [mention.text.content for mention in entity.mentions] | |
} | |
entity_list.append(entity_info) | |
# If there are no entities to export, notify the user | |
if not entity_list: | |
st.write("No entities with a valid 'mid' found to export.") | |
return | |
# Convert to DataFrame for easier export as CSV | |
df = pd.DataFrame(entity_list) | |
# Export as CSV | |
csv = df.to_csv(index=False) | |
st.download_button(label="Export Entities as CSV", data=csv, file_name="entities.csv", mime="text/csv") | |
# Export as JSON | |
json_data = json.dumps(entity_list, indent=2) | |
st.download_button(label="Export Entities as JSON", data=json_data, file_name="entities.json", mime="application/json") | |
# Sidebar content | |
st.sidebar.title("About This Tool") | |
st.sidebar.markdown("This tool leverages Google's NLP technology for entity analysis.") | |
st.sidebar.markdown("### Step-by-Step Guide") | |
st.sidebar.markdown(""" | |
1. **Open the Tool**: Navigate to the URL where the tool is hosted. | |
2. **User Input**: Enter the text you want to analyze. | |
3. **Analyze**: Click the 'Analyze' button. | |
4. **View Results**: See the identified entities and their details. | |
5. **Export Entities**: Export the entities as JSON or CSV. | |
""") | |
# Header and intro | |
st.title("Google Cloud NLP Entity Analyzer") | |
st.write("This tool analyzes text to identify entities such as people, locations, organizations, and events.") | |
st.write("Entity salience scores are always relative to the analyzed text.") | |
def sample_analyze_entities(text_content): | |
service_account_info = json.loads(st.secrets["google_nlp"]) | |
credentials = service_account.Credentials.from_service_account_info( | |
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"] | |
) | |
client = language_v1.LanguageServiceClient(credentials=credentials) | |
document = {"content": text_content, "type_": language_v1.Document.Type.PLAIN_TEXT, "language": "en"} | |
encoding_type = language_v1.EncodingType.UTF8 | |
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type}) | |
# Count the entities with 'mid' and either '/g/' or '/m/' in their metadata | |
entity_count = count_entities(response.entities) | |
if entity_count == 0: | |
st.markdown(f"# We found {len(response.entities)} entities - but found no Google Entities") | |
st.write("---") | |
elif entity_count == 1: | |
st.markdown(f"# We found {len(response.entities)} entities - and found 1 Google Entity") | |
st.write("---") | |
else: | |
st.markdown(f"# We found {len(response.entities)} entities - and found {entity_count} Google Entities") | |
st.write("---") | |
for i, entity in enumerate(response.entities): | |
st.write(f"Entity {i+1} of {len(response.entities)}") | |
st.write(f"Name: {entity.name}") | |
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}") | |
st.write(f"Salience Score: {entity.salience}") | |
if entity.metadata: | |
st.write("Metadata:") | |
st.write(entity.metadata) | |
if 'mid' in entity.metadata and ('/g/' in entity.metadata['mid'] or '/m/' in entity.metadata['mid']): | |
entity_id = entity.metadata['mid'] | |
query_knowledge_graph(entity_id) | |
if entity.mentions: | |
mention_count = len(entity.mentions) | |
plural = "s" if mention_count > 1 else "" | |
st.write(f"Mentions: {mention_count} mention{plural}") | |
st.write("Raw Array:") | |
st.write(entity.mentions) | |
st.write("---") | |
# Add the export functionality | |
export_entities(response.entities) | |
# User input for text analysis | |
user_input = st.text_area("Enter text to analyze") | |
if st.button("Analyze"): | |
if user_input: | |
sample_analyze_entities(user_input) | |