Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import json
|
|
2 |
import streamlit as st
|
3 |
from google.oauth2 import service_account
|
4 |
from google.cloud import language_v1
|
5 |
-
import urllib.parse
|
6 |
-
import urllib.request
|
7 |
import pandas as pd
|
8 |
|
9 |
# Function to query Google's Knowledge Graph API
|
@@ -14,14 +12,9 @@ def query_knowledge_graph(entity_id):
|
|
14 |
except Exception as e:
|
15 |
st.write(f"An error occurred: {e}")
|
16 |
|
17 |
-
# Function to
|
18 |
-
def
|
19 |
-
|
20 |
-
for entity in entities:
|
21 |
-
metadata = entity.metadata
|
22 |
-
if 'mid' in metadata and ('/g/' in metadata['mid'] or '/m/' in metadata['mid']):
|
23 |
-
count += 1
|
24 |
-
return count
|
25 |
|
26 |
# Function to serialize entity metadata
|
27 |
def serialize_entity_metadata(metadata):
|
@@ -80,22 +73,14 @@ def sample_analyze_entities(text_content):
|
|
80 |
|
81 |
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
st.
|
91 |
-
st.write("---")
|
92 |
-
else:
|
93 |
-
st.markdown(f"# We found {len(response.entities)} entities - and found {entity_count} Google Entities")
|
94 |
-
st.write("---")
|
95 |
-
|
96 |
-
|
97 |
-
for i, entity in enumerate(response.entities):
|
98 |
-
st.write(f"Entity {i+1} of {len(response.entities)}")
|
99 |
st.write(f"Name: {entity.name}")
|
100 |
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}")
|
101 |
st.write(f"Salience Score: {entity.salience}")
|
@@ -104,7 +89,7 @@ def sample_analyze_entities(text_content):
|
|
104 |
st.write("Metadata:")
|
105 |
st.write(entity.metadata)
|
106 |
|
107 |
-
if 'mid' in entity.metadata
|
108 |
entity_id = entity.metadata['mid']
|
109 |
query_knowledge_graph(entity_id)
|
110 |
|
@@ -118,7 +103,7 @@ def sample_analyze_entities(text_content):
|
|
118 |
st.write("---")
|
119 |
|
120 |
# Add the export functionality
|
121 |
-
export_entities(
|
122 |
|
123 |
# User input for text analysis
|
124 |
user_input = st.text_area("Enter text to analyze")
|
|
|
2 |
import streamlit as st
|
3 |
from google.oauth2 import service_account
|
4 |
from google.cloud import language_v1
|
|
|
|
|
5 |
import pandas as pd
|
6 |
|
7 |
# Function to query Google's Knowledge Graph API
|
|
|
12 |
except Exception as e:
|
13 |
st.write(f"An error occurred: {e}")
|
14 |
|
15 |
+
# Function to filter entities with "mid" in their metadata
|
16 |
+
def filter_entities_with_mid(entities):
|
17 |
+
return [entity for entity in entities if 'mid' in entity.metadata]
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Function to serialize entity metadata
|
20 |
def serialize_entity_metadata(metadata):
|
|
|
73 |
|
74 |
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
|
75 |
|
76 |
+
# Filter entities that have a "mid" in their metadata
|
77 |
+
entities_with_mid = filter_entities_with_mid(response.entities)
|
78 |
+
|
79 |
+
st.markdown(f"# We found {len(entities_with_mid)} entities with 'mid' in their metadata")
|
80 |
+
st.write("---")
|
81 |
+
|
82 |
+
for i, entity in enumerate(entities_with_mid):
|
83 |
+
st.write(f"Entity {i+1} of {len(entities_with_mid)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
st.write(f"Name: {entity.name}")
|
85 |
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}")
|
86 |
st.write(f"Salience Score: {entity.salience}")
|
|
|
89 |
st.write("Metadata:")
|
90 |
st.write(entity.metadata)
|
91 |
|
92 |
+
if 'mid' in entity.metadata:
|
93 |
entity_id = entity.metadata['mid']
|
94 |
query_knowledge_graph(entity_id)
|
95 |
|
|
|
103 |
st.write("---")
|
104 |
|
105 |
# Add the export functionality
|
106 |
+
export_entities(entities_with_mid)
|
107 |
|
108 |
# User input for text analysis
|
109 |
user_input = st.text_area("Enter text to analyze")
|