blazingbunny commited on
Commit
bc4e0d2
·
1 Parent(s): a88adef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -26
app.py CHANGED
@@ -9,7 +9,6 @@ entity_types_to_show = [
9
  ]
10
  selected_types = st.multiselect('Select entity types to show:', entity_types_to_show)
11
 
12
-
13
  # Header and intro
14
  st.title("Google Cloud NLP Entity Analyzer")
15
  st.write("## Introduction to the Knowledge Graph API")
@@ -44,38 +43,39 @@ def sample_analyze_entities(text_content, your_query=""):
44
  # Create an empty list to hold the results
45
  entities_list = []
46
 
47
- # ... (rest of your code above)
48
-
49
  for entity in response.entities:
50
  entity_type_name = language_v1.Entity.Type(entity.type_).name
51
  if not selected_types or entity_type_name in selected_types:
52
- entity_details = {
53
- "Name": entity.name,
54
- "Type": entity_type_name,
55
- "Salience Score": entity.salience,
56
- "Metadata": entity.metadata,
57
- "Mentions": [mention.text.content for mention in entity.mentions]
58
- }
59
- entities_list.append(entity_details)
60
-
61
- # ... (rest of your code below)
62
 
 
63
 
 
64
  if your_query:
65
- st.write(f"We found {len(entities_list)} results for your query of **{your_query}**")
66
  else:
67
- st.write(f"We found {len(entities_list)} results for your query")
68
-
69
- for entity in entities_list:
70
- st.write(f"**Name**: {entity['Name']}")
71
- st.write(f"**Type**: {entity['Type']}")
72
- st.write(f"**Salience Score**: {entity['Salience Score']}")
73
- if entity["Metadata"]:
74
- st.write("**Metadata**: ")
75
- st.json(entity["Metadata"])
76
- if entity["Mentions"]:
77
- st.write("**Mentions**: ")
78
- st.json(entity["Mentions"])
 
 
 
 
 
 
 
 
 
 
79
 
80
  # User input for text analysis
81
  user_input = st.text_area("Enter text to analyze")
 
9
  ]
10
  selected_types = st.multiselect('Select entity types to show:', entity_types_to_show)
11
 
 
12
  # Header and intro
13
  st.title("Google Cloud NLP Entity Analyzer")
14
  st.write("## Introduction to the Knowledge Graph API")
 
43
  # Create an empty list to hold the results
44
  entities_list = []
45
 
 
 
46
  for entity in response.entities:
47
  entity_type_name = language_v1.Entity.Type(entity.type_).name
48
  if not selected_types or entity_type_name in selected_types:
49
+ # Your existing code for creating and populating the entity_details dictionary...
 
 
 
 
 
 
 
 
 
50
 
51
+ entities_list.append(entity_details) # Append the dictionary to the list
52
 
53
+ # Streamlit UI
54
  if your_query:
55
+ st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**")
56
  else:
57
+ st.write("### We found results for your query")
58
+
59
+ st.write("----")
60
+
61
+ for i, entity in enumerate(entities_list):
62
+ st.write(f"Relevance Score: {entity.get('Salience Score', 'N/A')} \t {i+1} of {len(entities_list)}")
63
+
64
+ # Display all key-value pairs in the entity dictionary
65
+ for key, value in entity.items():
66
+ if value:
67
+ st.write(f"**{key}:**")
68
+ if isinstance(value, (list, dict)):
69
+ try:
70
+ st.json(value)
71
+ except Exception as e:
72
+ st.write(f"Error while displaying JSON: {e}")
73
+ else:
74
+ st.write(value)
75
+
76
+ st.write("----")
77
+
78
+ st.write(f"### Language of the text: {response.language}")
79
 
80
  # User input for text analysis
81
  user_input = st.text_area("Enter text to analyze")