blazingbunny commited on
Commit
c2b8ffb
·
1 Parent(s): 9502681

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -9
app.py CHANGED
@@ -3,13 +3,29 @@ from google.oauth2 import service_account
3
  from google.cloud import language_v1
4
  import streamlit as st
5
 
 
 
 
 
 
 
 
 
 
 
6
  def sample_analyze_entities(text_content):
 
7
  service_account_info = json.loads(st.secrets["google_nlp"])
 
 
8
  credentials = service_account.Credentials.from_service_account_info(
9
  service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
10
  )
 
 
11
  client = language_v1.LanguageServiceClient(credentials=credentials)
12
 
 
13
  type_ = language_v1.Document.Type.PLAIN_TEXT
14
  language = "en"
15
  document = {"content": text_content, "type_": type_, "language": language}
@@ -48,21 +64,19 @@ def sample_analyze_entities(text_content):
48
  st.write(f"**Name**: {entity['Name']}")
49
  st.write(f"**Type**: {entity['Type']}")
50
  st.write(f"**Salience Score**: {entity['Salience Score']}")
51
-
52
  if entity["Metadata"]:
53
  st.write("**Metadata**: ")
54
  st.json(entity["Metadata"])
55
-
56
  if entity["Mentions"]:
57
  st.write("**Mentions**: ")
58
  st.json(entity["Mentions"])
59
 
60
 
61
- st.title('Google Cloud NLP Entity Analyzer')
62
- user_input = st.text_area("Enter text to analyze", "Your text goes here")
63
 
64
- if st.button('Analyze'):
65
- if user_input:
66
- sample_analyze_entities(user_input)
67
- else:
68
- st.write("Please enter some text to analyze.")
 
3
  from google.cloud import language_v1
4
  import streamlit as st
5
 
6
+ # Header and intro
7
+ st.write("## Introduction to the Knowledge Graph API")
8
+ st.write("---")
9
+ st.write("""
10
+ The Google Knowledge Graph API reveals entity information related to a keyword, that Google knows about.
11
+ This information can be very useful for SEO – discovering related topics and what Google believes is relevant.
12
+ It can also help when trying to claim/win a Knowledge Graph box on search results.
13
+ The API requires a high level of technical understanding, so this tool creates a simple public interface, with the ability to export data into spreadsheets.
14
+ """)
15
+
16
  def sample_analyze_entities(text_content):
17
+ # Parse the JSON string to a dictionary
18
  service_account_info = json.loads(st.secrets["google_nlp"])
19
+
20
+ # Create credentials
21
  credentials = service_account.Credentials.from_service_account_info(
22
  service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
23
  )
24
+
25
+ # Initialize the LanguageServiceClient with the credentials
26
  client = language_v1.LanguageServiceClient(credentials=credentials)
27
 
28
+ # NLP analysis
29
  type_ = language_v1.Document.Type.PLAIN_TEXT
30
  language = "en"
31
  document = {"content": text_content, "type_": type_, "language": language}
 
64
  st.write(f"**Name**: {entity['Name']}")
65
  st.write(f"**Type**: {entity['Type']}")
66
  st.write(f"**Salience Score**: {entity['Salience Score']}")
67
+
68
  if entity["Metadata"]:
69
  st.write("**Metadata**: ")
70
  st.json(entity["Metadata"])
71
+
72
  if entity["Mentions"]:
73
  st.write("**Mentions**: ")
74
  st.json(entity["Mentions"])
75
 
76
 
77
+ st.write(f"### Language of the text: {response.language}")
 
78
 
79
+ # User input for text analysis
80
+ user_input = st.text_area("Enter text to analyze")
81
+ if st.button("Analyze"):
82
+ sample_analyze_entities(user_input)