blazingbunny commited on
Commit
f3178b1
·
1 Parent(s): 8c32010

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -55
app.py CHANGED
@@ -9,16 +9,6 @@ entity_types_to_show = [
9
  ]
10
  selected_types = st.multiselect('Select entity types to show:', entity_types_to_show)
11
 
12
- def sample_analyze_entities(text_content, selected_types):
13
- # Existing code for setting up credentials and client...
14
-
15
- # Create an empty list to hold the results
16
- entities_list = []
17
-
18
- for entity in response.entities:
19
- entity_type_name = language_v1.Entity.Type(entity.type_).name
20
- if entity_type_name in selected_types:
21
-
22
  # Header and intro
23
  st.title("Google Cloud NLP Entity Analyzer")
24
  st.write("## Introduction to the Knowledge Graph API")
@@ -54,51 +44,10 @@ def sample_analyze_entities(text_content, your_query=""):
54
  entities_list = []
55
 
56
  for entity in response.entities:
57
- # Create a dictionary to hold individual entity details
58
- entity_details = {
59
- "Name": entity.name,
60
- "Type": language_v1.Entity.Type(entity.type_).name,
61
- "Salience Score": entity.salience,
62
- "Metadata": [],
63
- "Mentions": []
64
- }
65
-
66
- for metadata_name, metadata_value in entity.metadata.items():
67
- entity_details["Metadata"].append({metadata_name: metadata_value})
68
-
69
- for mention in entity.mentions:
70
- entity_details["Mentions"].append({
71
- "Text": mention.text.content,
72
- "Type": language_v1.EntityMention.Type(mention.type_).name
73
- })
74
-
75
- # Append the dictionary to the list
76
- entities_list.append(entity_details)
77
-
78
- # Streamlit UI
79
- if your_query:
80
- st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**")
81
- else:
82
- st.write("### We found results for your query")
83
-
84
- st.write("----")
85
-
86
- for i, entity in enumerate(entities_list):
87
- st.write(f"Relevance Score: {entity.get('Salience Score', 'N/A')} \t {i+1} of {len(entities_list)}")
88
-
89
- # Display all key-value pairs in the entity dictionary
90
- for key, value in entity.items():
91
- if value:
92
- st.write(f"**{key}:**")
93
- if isinstance(value, (list, dict)):
94
- st.json(value)
95
- else:
96
- st.write(value)
97
-
98
- st.write("----")
99
-
100
-
101
- st.write(f"### Language of the text: {response.language}")
102
 
103
  # User input for text analysis
104
  user_input = st.text_area("Enter text to analyze")
 
9
  ]
10
  selected_types = st.multiselect('Select entity types to show:', entity_types_to_show)
11
 
 
 
 
 
 
 
 
 
 
 
12
  # Header and intro
13
  st.title("Google Cloud NLP Entity Analyzer")
14
  st.write("## Introduction to the Knowledge Graph API")
 
44
  entities_list = []
45
 
46
  for entity in response.entities:
47
+ entity_type_name = language_v1.Entity.Type(entity.type_).name
48
+ if entity_type_name in selected_types:
49
+ # Rest of your code to handle each entity
50
+ # ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  # User input for text analysis
53
  user_input = st.text_area("Enter text to analyze")