import json import streamlit as st from google.oauth2 import service_account from google.cloud import language_v1 # Adding checkbox options for entity types entity_types_to_show = [ "UNKNOWN", "PERSON", "LOCATION", "ORGANIZATION", "EVENT", "WORK_OF_ART", "CONSUMER_GOOD", "OTHER" ] selected_types = st.multiselect('Select entity types to show:', entity_types_to_show) def sample_analyze_entities(text_content, selected_types): # Existing code for setting up credentials and client... # Create an empty list to hold the results entities_list = [] for entity in response.entities: entity_type_name = language_v1.Entity.Type(entity.type_).name if entity_type_name in selected_types: # Header and intro st.title("Google Cloud NLP Entity Analyzer") st.write("## Introduction to the Knowledge Graph API") st.write("---") st.write(""" The Google Knowledge Graph API reveals entity information related to a keyword, that Google knows about. This information can be very useful for SEO – discovering related topics and what Google believes is relevant. It can also help when trying to claim/win a Knowledge Graph box on search results. The API requires a high level of technical understanding, so this tool creates a simple public interface, with the ability to export data into spreadsheets. """) def sample_analyze_entities(text_content, your_query=""): # Parse the JSON string to a dictionary service_account_info = json.loads(st.secrets["google_nlp"]) # Create credentials credentials = service_account.Credentials.from_service_account_info( service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"] ) # Initialize the LanguageServiceClient with the credentials client = language_v1.LanguageServiceClient(credentials=credentials) # NLP analysis type_ = language_v1.Document.Type.PLAIN_TEXT language = "en" document = {"content": text_content, "type_": type_, "language": language} encoding_type = language_v1.EncodingType.UTF8 response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type}) # Create an empty list to hold the results entities_list = [] for entity in response.entities: # Create a dictionary to hold individual entity details entity_details = { "Name": entity.name, "Type": language_v1.Entity.Type(entity.type_).name, "Salience Score": entity.salience, "Metadata": [], "Mentions": [] } for metadata_name, metadata_value in entity.metadata.items(): entity_details["Metadata"].append({metadata_name: metadata_value}) for mention in entity.mentions: entity_details["Mentions"].append({ "Text": mention.text.content, "Type": language_v1.EntityMention.Type(mention.type_).name }) # Append the dictionary to the list entities_list.append(entity_details) # Streamlit UI if your_query: st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**") else: st.write("### We found results for your query") st.write("----") for i, entity in enumerate(entities_list): st.write(f"Relevance Score: {entity.get('Salience Score', 'N/A')} \t {i+1} of {len(entities_list)}") # Display all key-value pairs in the entity dictionary for key, value in entity.items(): if value: st.write(f"**{key}:**") if isinstance(value, (list, dict)): st.json(value) else: st.write(value) st.write("----") st.write(f"### Language of the text: {response.language}") # User input for text analysis user_input = st.text_area("Enter text to analyze") your_query = st.text_input("Enter your query (optional)") if st.button("Analyze"): sample_analyze_entities(user_input, your_query)