import json import streamlit as st from google.oauth2 import service_account from google.cloud import language_v1 import requests # Function for querying Google Knowledge Graph API def query_google_knowledge_graph(api_key, entity_name): query = entity_name service_url = "https://kgsearch.googleapis.com/v1/entities:search" params = { 'query': query, 'limit': 1, 'indent': True, 'key': api_key, } response = requests.get(service_url, params=params) return response.json() # Header and intro st.title("Google Cloud NLP Entity Analyzer") st.write("## Introduction to the Knowledge Graph API") st.write("---") # ... (your intro text here) def sample_analyze_entities(text_content, your_query=""): api_key = json.loads(st.secrets["google_nlp"]) # The key is the same for both APIs credentials = service_account.Credentials.from_service_account_info( api_key, scopes=["https://www.googleapis.com/auth/cloud-platform"] ) client = language_v1.LanguageServiceClient(credentials=credentials) type_ = language_v1.Document.Type.PLAIN_TEXT language = "en" document = {"content": text_content, "type_": type_, "language": language} encoding_type = language_v1.EncodingType.UTF8 response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type}) # ... (rest of your NLP code) entities_list = [] for entity in response.entities: entity_details = { "Name": entity.name, "Type": language_v1.Entity.Type(entity.type_).name, "Salience Score": entity.salience, "Metadata": entity.metadata, "Mentions": [mention.text.content for mention in entity.mentions] } entities_list.append(entity_details) if your_query: st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**") else: st.write("### We found results for your query") st.write("----") for i, entity in enumerate(entities_list): # ... (your existing entity display code) # Query Google Knowledge Graph API for each entity kg_info = query_google_knowledge_graph(api_key, entity['Name']) st.write("### Google Knowledge Graph Information") st.json(kg_info) # Display the JSON response st.write("----") # User input for text analysis user_input = st.text_area("Enter text to analyze") your_query = st.text_input("Enter your query (optional)") if st.button("Analyze"): sample_analyze_entities(user_input, your_query)