File size: 5,547 Bytes
3a4bf94
ab2b4c2
8b884de
ab2b4c2
8b884de
3a4bf94
8b884de
3a4bf94
 
a7d1184
 
 
 
 
 
 
 
 
4e2ecc7
 
 
 
d059157
4e2ecc7
 
35e07c0
e84fc82
35e07c0
 
1f425c4
 
 
 
 
e84fc82
35e07c0
4e2ecc7
 
 
 
 
 
 
 
e179a3b
a7d1184
 
 
8f2c408
a7d1184
8889521
 
 
 
4144a3c
9ee1fc5
a1f2578
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
title: BMI - Biomedical Informatics Lab
emoji: 🐠
colorFrom: blue
colorTo: green
sdk: static
pinned: true
---

<p align="center">
  <img src="bmilogo.png" />
</p>

<p align="center">
  <img src="bmi_scritta.png" />
</p>


# BMI - Biomedical Informatics Lab "Mario Stefanelli"

## About Us

BMI belongs to the Department of Electrical, Computer, and Biomedical Engineering (Faculty of Engineering) of the **University of Pavia**, Italy.
Established in 1982, it is a leading center for education, research, and IT innovative solutions in the healthcare area. Nowadays about 30 people are working at BMI, focusing their research on:

<div align="center">
<small>
<span style="background: rgba(155,155,155,0.7); color: white; padding: 4px 8px; text-align: center; border-radius: 8px;">Biomedical NLP</span>
<span style="background: rgba(155,155,155,0.7); color: white; padding: 4px 8px; text-align: center; border-radius: 8px;">Medical Imaging</span>
<span style="background: rgba(155,155,155,0.7); color: white; padding: 4px 8px; text-align: center; border-radius: 8px;">Clinical Data Mining</span>
<span style="background: rgba(155,155,155,0.7); color: white; padding: 4px 8px; text-align: center; border-radius: 8px;">Biomedical Knowledge Management</span>
<span style="background: rgba(155,155,155,0.7); color: white; padding: 4px 8px; text-align: center; border-radius: 8px;">Decision Support Systems</span>
<span style="background: rgba(155,155,155,0.7); color: white; padding: 4px 8px; text-align: center; border-radius: 8px;">Telemedicine</span>
<span style="background: rgba(155,155,155,0.7); color: white; padding: 4px 8px; text-align: center; border-radius: 8px;">E-learning</span>
</small>
</div>

## NLP Models

Our research interests have led us to frequently explore the realm of Natural Language Processing, including Transformers. 
Here we host public weights for our biomedical language models. There are several options to choose from, please check the details below.

| Model      | Domain  | Type              | Details                                                     |
|------------|---------|-------------------|-------------------------------------------------------------|
| [Igea](https://huggingface.co/bmi-labmedinfo/Igea-7B-v0.1) | Biomedical | CausalLM Pretrain | Small language model trained after [sapienzanlp/Minerva](https://huggingface.co/sapienzanlp/Minerva-1B-base-v1.0) with more than 5 billion biomedical words in Italian. Three versions available: [350M params](https://huggingface.co/bmi-labmedinfo/Igea-350M-v0.1), [1B params](https://huggingface.co/bmi-labmedinfo/Igea-1B-v0.1), [3B params](https://huggingface.co/bmi-labmedinfo/Igea-3B-v0.1), and [7B params](https://huggingface.co/bmi-labmedinfo/Igea-7B-v0.1). |
| [BioBIT](https://huggingface.co/bmi-labmedinfo/bioBIT) <sup>*</sup>| Biomedical | MaskedLM Pretrain | BERT model trained after [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) with 28GB Pubmed abstracts (as in BioBERT) that have been translated from English into Italian using Neural Machine Translation (GNMT). |
| [MedBIT](https://huggingface.co/bmi-labmedinfo/medBIT) <sup>*</sup>| Medical | MaskedLM Pretrain | BERT model trained after [BioBIT](https://huggingface.co/bmi-labmedinfo/bioBIT) with additional 100MB of medical textbook data without any regularization. |
| [MedBIT-R3+](https://huggingface.co/bmi-labmedinfo/medBIT-r3-plus) (recommended) <sup>*</sup>| Medical | MaskedLM Pretrain | BERT model trained after [BioBIT](https://huggingface.co/bmi-labmedinfo/bioBIT) with additional 200MB of medical textbook data and web-crawled medical resources in Italian. Regularized with LLRD (.95), Mixout (.9), and Warmup (.02). |

<sup>*</sup> <small>model developed for the [Italian Neuroscience and Rehabilitation Network](https://www.reteneuroscienze.it/en/istituti-nazionali-virtuali/) in partnership with the Neuroinformatics Lab of IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy</small>


## Related Research Papers

* *Buonocore T. M., Rancati S., and Parimbelli E (2024). Igea: a Decoder-Only Language Model for Biomedical Text Generation in Italian, ArXiv. https://arxiv.org/abs/2407.06011* 
* *Buonocore T. M., Parimbelli E., Tibollo V., Napolitano C., Priori S., and Bellazzi R. (2023). A Rule-Free Approach for Cardiological Registry Filling from Italian Clinical Notes with Question Answering Transformers, Artificial Intelligence in Medicine: 21st International Conference on Artificial Intelligence in Medicine, AIME 2023. https://doi.org/10.1007/978-3-031-34344-5_19*
* *Crema C., Buonocore T.M., Fostinelli S., Parimbelli E., Verde F., Fundarò C., Manera M., Ramusino M.C., Capelli M., Costa A., Binetti G., Bellazzi R., Redolfi A. (2023). Advancing Italian biomedical information extraction with transformers-based models: Methodological insights and multicenter practical application, Journal of Biomedical Informatics. https://doi.org/10.1016/j.jbi.2023.104557*
* *Buonocore T. M., Crema C., Redolfi A., Bellazzi R., Parimbelli E. (2023). Localising In-Domain Adaptation of Transformer-Based Biomedical Language Models, Journal of Biomedical Informatics. https://doi.org/10.1016/j.jbi.2023.104431*
* *Buonocore T. M., Parimbelli E., Sacchi L., Bellazzi R., Del Campo L., & Quaglini S. (2022). Improving Keyword-Based Topic Classification in Cancer Patient Forums with Multilingual Transformers. Studies in health technology and informatics, 290, 597–601. https://doi.org/10.3233/SHTI220147*