Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
@@ -40,7 +40,7 @@ Here we host public weights for our biomedical language models. There are severa
|
|
40 |
|
41 |
| Model | Domain | Type | Details |
|
42 |
|------------|---------|-------------------|-------------------------------------------------------------|
|
43 |
-
| [Igea](https://huggingface.co/Detsutut/Igea-1B-v0.0.1) | Biomedical | CausalLM Pretrain | Small language model trained after [sapienzanlp/Minerva-1B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-1B-base-v1.0) with
|
44 |
| [BioBIT](https://huggingface.co/bmi-labmedinfo/bioBIT) <sup>*</sup>| Biomedical | MaskedLM Pretrain | BERT model trained after [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) with 28GB Pubmed abstracts (as in BioBERT) that have been translated from English into Italian using Neural Machine Translation (GNMT). |
|
45 |
| [MedBIT](https://huggingface.co/bmi-labmedinfo/medBIT) <sup>*</sup>| Medical | MaskedLM Pretrain | BERT model trained after [BioBIT](https://huggingface.co/bmi-labmedinfo/bioBIT) with additional 100MB of medical textbook data without any regularization. |
|
46 |
| [MedBIT-R3+](https://huggingface.co/bmi-labmedinfo/medBIT-r3-plus) (recommended) <sup>*</sup>| Medical | MaskedLM Pretrain | BERT model trained after [BioBIT](https://huggingface.co/bmi-labmedinfo/bioBIT) with additional 200MB of medical textbook data and web-crawled medical resources in Italian. Regularized with LLRD (.95), Mixout (.9), and Warmup (.02). |
|
@@ -48,8 +48,6 @@ Here we host public weights for our biomedical language models. There are severa
|
|
48 |
<sup>*</sup> <small>model developed for the [Italian Neuroscience and Rehabilitation Network](https://www.reteneuroscienze.it/en/istituti-nazionali-virtuali/) in partnership with the Neuroinformatics Lab of IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy</small>
|
49 |
|
50 |
|
51 |
-
Other models coming soon!
|
52 |
-
|
53 |
## Related Research Papers
|
54 |
|
55 |
* *Buonocore T. M., Parimbelli E., Tibollo V., Napolitano C., Priori S., and Bellazzi R. (2023). A Rule-Free Approach for Cardiological Registry Filling from Italian Clinical Notes with Question Answering Transformers, Artificial Intelligence in Medicine: 21st International Conference on Artificial Intelligence in Medicine, AIME 2023. https://doi.org/10.1007/978-3-031-34344-5_19*
|
|
|
40 |
|
41 |
| Model | Domain | Type | Details |
|
42 |
|------------|---------|-------------------|-------------------------------------------------------------|
|
43 |
+
| [Igea](https://huggingface.co/Detsutut/Igea-1B-v0.0.1) | Biomedical | CausalLM Pretrain | Small language model trained after [sapienzanlp/Minerva-1B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-1B-base-v1.0) with more than 5 billion biomedical words in Italian. Three versions available: [350M params](https://huggingface.co/bmi-labmedinfo/Igea-350M-v0.0.1), [1B params](https://huggingface.co/bmi-labmedinfo/Igea-1B-v0.0.1), and [3B params](https://huggingface.co/bmi-labmedinfo/Igea-3B-v0.0.1). Use the [quantized GGUF version](Detsutut/Igea-1B-v0.0.1-Q4_K_M-GGUF) for CPU-only, limited-hardware machines. |
|
44 |
| [BioBIT](https://huggingface.co/bmi-labmedinfo/bioBIT) <sup>*</sup>| Biomedical | MaskedLM Pretrain | BERT model trained after [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) with 28GB Pubmed abstracts (as in BioBERT) that have been translated from English into Italian using Neural Machine Translation (GNMT). |
|
45 |
| [MedBIT](https://huggingface.co/bmi-labmedinfo/medBIT) <sup>*</sup>| Medical | MaskedLM Pretrain | BERT model trained after [BioBIT](https://huggingface.co/bmi-labmedinfo/bioBIT) with additional 100MB of medical textbook data without any regularization. |
|
46 |
| [MedBIT-R3+](https://huggingface.co/bmi-labmedinfo/medBIT-r3-plus) (recommended) <sup>*</sup>| Medical | MaskedLM Pretrain | BERT model trained after [BioBIT](https://huggingface.co/bmi-labmedinfo/bioBIT) with additional 200MB of medical textbook data and web-crawled medical resources in Italian. Regularized with LLRD (.95), Mixout (.9), and Warmup (.02). |
|
|
|
48 |
<sup>*</sup> <small>model developed for the [Italian Neuroscience and Rehabilitation Network](https://www.reteneuroscienze.it/en/istituti-nazionali-virtuali/) in partnership with the Neuroinformatics Lab of IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy</small>
|
49 |
|
50 |
|
|
|
|
|
51 |
## Related Research Papers
|
52 |
|
53 |
* *Buonocore T. M., Parimbelli E., Tibollo V., Napolitano C., Priori S., and Bellazzi R. (2023). A Rule-Free Approach for Cardiological Registry Filling from Italian Clinical Notes with Question Answering Transformers, Artificial Intelligence in Medicine: 21st International Conference on Artificial Intelligence in Medicine, AIME 2023. https://doi.org/10.1007/978-3-031-34344-5_19*
|