Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ctransformers import AutoModelForCausalLM | |
from transformers import AutoTokenizer, pipeline | |
import torch | |
import re | |
# Initialize the model | |
model = AutoModelForCausalLM.from_pretrained("bmi-labmedinfo/Igea-1B-instruct-v0.1-GGUF", model_file="unsloth.Q4_K_M.gguf", model_type="mistral", hf=True) | |
tokenizer = AutoTokenizer.from_pretrained( "bmi-labmedinfo/Igea-1B-instruct-v0.1") | |
gen_pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer | |
) | |
alpaca_instruct_prompt = """ | |
{} | |
### Istruzione: | |
{} | |
### Risposta: | |
{}""" | |
# Define the function to generate text | |
def generate_text(input_text, max_new_tokens=100, temperature=1, system_prompt=""): | |
if len(system_prompt)>0: | |
system_str = system_prompt | |
else: | |
system_str = "Di seguito è riportata un'istruzione che descrive un compito. Scrivi una risposta che completi in modo appropriato la richiesta." | |
prompt = alpaca_instruct_prompt.format(system_str, input_text,"") | |
output = gen_pipeline( | |
input_text, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
return_full_text = False | |
) | |
generated_text = output[0]['generated_text'] | |
if generated_text[-1] not in [".","!","?","\n"]: | |
generated_text = generated_text + " [...]" | |
return f"<span>{input_text}</span><b style='color: blue;'>{generated_text}</b>" | |
# Create the Gradio interface | |
input_text = gr.Textbox(lines=2, placeholder="Enter your request here...", label="Input Text") | |
system_prompt = gr.Textbox(lines=2, placeholder="Enter custom system prompt...", label="Custom System Prompt") | |
max_new_tokens = gr.Slider(minimum=1, maximum=200, value=100, step=1, label="Max New Tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature") | |
with gr.Blocks(css="#outbox { border-radius: 8px !important; border: 1px solid #e5e7eb !important; padding: 8px !important; text-align:center !important;}") as iface: | |
gr.Markdown("# Igea Instruct Interface ⚕️🩺") | |
gr.Markdown("🐢💬 To guarantee a reasonable througput (<1 min to answer with default settings), this space employs a **GGUF quantized version of [Igea 1B](https://huggingface.co/bmi-labmedinfo/Igea-1B-v0.0.1)**, optimized for **hardware-limited, CPU-only machines** like the free-tier HuggingFace space. Quantized models may result in significant performance degradation and therefore are not representative of the original model capabilities.") | |
gr.Markdown("⚠️ Read the **[bias, risks and limitations](https://huggingface.co/bmi-labmedinfo/Igea-1B-v0.0.1#%F0%9F%9A%A8%E2%9A%A0%EF%B8%8F%F0%9F%9A%A8-bias-risks-and-limitations-%F0%9F%9A%A8%E2%9A%A0%EF%B8%8F%F0%9F%9A%A8)** of Igea before use!") | |
input_text.render() | |
with gr.Accordion("Advanced Options", open=False): | |
max_new_tokens.render() | |
temperature.render() | |
system_prompt.render() | |
output = gr.HTML(label="Generated Text",elem_id="outbox") | |
btn = gr.Button("Generate") | |
btn.click(generate_text, [input_text, max_new_tokens, temperature, system_prompt], output) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch(inline=True) | |