File size: 26,242 Bytes
40d5657
 
47d6fc0
40d5657
 
 
 
fa23c0d
40d5657
47d6fc0
40d5657
 
 
 
 
886605d
fa23c0d
40d5657
00178b2
 
5bb569a
00178b2
40d5657
 
 
5bb569a
40d5657
5bb569a
 
 
00178b2
5bb569a
 
 
 
40d5657
 
 
5bb569a
 
40d5657
 
 
 
 
00178b2
 
 
 
47d6fc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d5657
47d6fc0
 
 
 
d5a3279
db25e46
47d6fc0
d5a3279
 
 
 
 
 
 
 
47d6fc0
d5a3279
 
 
 
47d6fc0
db25e46
 
 
 
 
 
 
d5a3279
47d6fc0
db25e46
 
 
 
 
47d6fc0
 
d5a3279
47d6fc0
 
40d5657
 
 
d619e33
 
db25e46
40d5657
 
fa23c0d
 
 
 
 
40d5657
d619e33
00178b2
47d6fc0
 
 
 
 
00dfc3d
47d6fc0
40d5657
 
 
fa23c0d
 
 
 
00178b2
fa23c0d
 
 
40d5657
00178b2
 
 
 
 
 
 
 
 
 
 
 
fa23c0d
 
 
 
 
 
 
 
00178b2
 
 
 
 
 
00dfc3d
00178b2
 
 
 
0d12afd
 
 
00178b2
 
fa23c0d
 
 
00178b2
 
 
0d12afd
40d5657
 
00178b2
 
 
0d12afd
00178b2
 
 
 
 
 
 
 
5bb569a
00178b2
 
 
 
 
 
47d6fc0
 
00178b2
 
 
 
40d5657
00178b2
5bb569a
 
00178b2
5bb569a
 
 
 
40d5657
00178b2
d619e33
00178b2
40d5657
 
00178b2
 
40d5657
 
fa23c0d
00178b2
 
 
40d5657
 
 
 
 
114827e
00178b2
2eaaab3
 
 
 
00178b2
2eaaab3
 
 
 
 
00178b2
2eaaab3
00178b2
 
 
 
2eaaab3
 
ca0db66
 
 
2eaaab3
ca0db66
 
 
 
 
 
 
 
2eaaab3
 
ca0db66
 
 
 
 
 
 
d619e33
40d5657
00178b2
 
 
 
 
 
 
 
 
 
 
5bb569a
00178b2
 
 
4512289
 
 
 
 
 
40d5657
4512289
 
 
 
 
00178b2
 
5bb569a
00178b2
 
4512289
 
 
 
 
 
 
00178b2
 
0d12afd
00178b2
 
 
 
 
 
 
 
 
 
 
0d12afd
00178b2
 
 
 
 
 
 
 
5bb569a
00178b2
 
114827e
 
 
 
 
 
 
 
 
 
00178b2
 
 
 
4512289
 
 
7bf7dc3
4512289
 
0d12afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d5657
00178b2
40d5657
fa23c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f08c0c5
00178b2
 
 
 
 
 
 
 
 
 
 
 
 
 
fa23c0d
00178b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d5657
fa23c0d
 
9be6f61
40d5657
 
886605d
80c526e
 
ca0db66
 
40d5657
 
 
 
 
 
9be6f61
00178b2
 
40d5657
 
 
 
 
fa23c0d
40d5657
 
 
 
00178b2
fa23c0d
 
 
 
40d5657
 
 
 
92eb715
fa23c0d
00178b2
40d5657
fa23c0d
 
 
92eb715
fa23c0d
00178b2
40d5657
fa23c0d
 
 
 
 
00178b2
fa23c0d
 
 
 
 
 
 
 
00178b2
 
 
92eb715
00178b2
fa23c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00178b2
fa23c0d
 
 
 
92eb715
fa23c0d
00178b2
fa23c0d
5bb569a
 
 
 
7ab0bdf
5bb569a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa23c0d
40d5657
00178b2
 
 
 
ca0db66
00178b2
 
40d5657
 
00178b2
 
 
 
 
 
 
 
5bb569a
00178b2
 
 
40d5657
00178b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01020
00178b2
 
40d5657
9be6f61
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
import gradio as gr
import torch
from transformers import AutoModel, BitsAndBytesConfig, AutoTokenizer
import tempfile
from huggingface_hub import HfApi
from huggingface_hub import list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bitsandbytes.nn import Linear4bit
import os
from huggingface_hub import snapshot_download

def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
    # ^ expect a gr.OAuthProfile object as input to get the user's profile
    # if the user is not logged in, profile will be None
    if profile is None:
        return "Hello ! Please Login to your HuggingFace account to use the BitsAndBytes Quantizer!"
    return f"Hello {profile.name} ! Welcome to BitsAndBytes Quantizer"


def check_model_exists(
    oauth_token: gr.OAuthToken | None, username, model_name, quantized_model_name, upload_to_community
):
    """Check if a model exists in the user's Hugging Face repository."""
    try:
        models = list_models(author=username, token=oauth_token.token)
        community_models = list_models(author="bnb-community", token=oauth_token.token)
        model_names = [model.id for model in models]
        community_model_names = [model.id for model in community_models]
        if upload_to_community:
            repo_name = f"bnb-community/{model_name.split('/')[-1]}-bnb-4bit"
        else:
            if quantized_model_name:
                repo_name = f"{username}/{quantized_model_name}"
            else:
                repo_name = f"{username}/{model_name.split('/')[-1]}-bnb-4bit"

        if repo_name in model_names:
            return f"Model '{repo_name}' already exists in your repository."
        elif repo_name in community_model_names:
            return f"Model '{repo_name}' already exists in the bnb-community organization."
        else:
            return None  # Model does not exist
    except Exception as e:
        return f"Error checking model existence: {str(e)}"


def create_model_card(
    model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4
):
    # Try to download the original README
    original_readme = ""
    original_yaml_header = ""
    try:
        # Download the README.md file from the original model
        model_path = snapshot_download(repo_id=model_name, allow_patterns=["README.md"], repo_type="model")
        readme_path = os.path.join(model_path, "README.md")
        
        if os.path.exists(readme_path):
            with open(readme_path, 'r', encoding='utf-8') as f:
                content = f.read()
                
                if content.startswith('---'):
                    parts = content.split('---', 2)
                    if len(parts) >= 3:
                        original_yaml_header = parts[1]
                        original_readme = '---'.join(parts[2:])
                    else:
                        original_readme = content
                else:
                    original_readme = content
    except Exception as e:
        print(f"Error reading original README: {str(e)}")
        original_readme = ""
    
    # Create new YAML header with base_model field
    yaml_header = f"""---
base_model:
- {model_name}"""
    
    # Add any original YAML fields except base_model
    if original_yaml_header:
        in_base_model_section = False
        found_tags = False
        for line in original_yaml_header.strip().split('\n'):
            # Skip if we're in a base_model section that continues to the next line
            if in_base_model_section:
                if line.strip().startswith('-') or not line.strip() or line.startswith(' '):
                    continue
                else:
                    in_base_model_section = False
            
            # Check for base_model field
            if line.strip().startswith('base_model:'):
                in_base_model_section = True
                # If base_model has inline value (like "base_model: model_name")
                if ':' in line and len(line.split(':', 1)[1].strip()) > 0:
                    in_base_model_section = False
                continue
            
            # Check for tags field and add bnb-my-repo
            if line.strip().startswith('tags:'):
                found_tags = True
                yaml_header += f"\n{line}"
                yaml_header += "\n- bnb-my-repo"
                continue
                
            yaml_header += f"\n{line}"
        
        # If tags field wasn't found, add it
        if not found_tags:
            yaml_header += "\ntags:"
            yaml_header += "\n- bnb-my-repo"
    # Complete the YAML header
    yaml_header += "\n---"

    # Create the quantization info section
    quant_info = f"""
# {model_name} (Quantized)

## Description
This model is a quantized version of the original model [`{model_name}`](https://huggingface.co/{model_name}). 

It's quantized using the BitsAndBytes library to 4-bit using the [bnb-my-repo](https://huggingface.co/spaces/bnb-community/bnb-my-repo) space.

## Quantization Details
- **Quantization Type**: int4
- **bnb_4bit_quant_type**: {quant_type_4}
- **bnb_4bit_use_double_quant**: {double_quant_4}
- **bnb_4bit_compute_dtype**: {compute_type_4}
- **bnb_4bit_quant_storage**: {quant_storage_4}

"""

    # Combine everything
    model_card = yaml_header + quant_info
    
    # Append original README content if available
    if original_readme and not original_readme.isspace():
        model_card += "\n\n# 📄 Original Model Information\n\n" + original_readme
    
    return model_card


DTYPE_MAPPING = {
    "int8": torch.int8,
    "uint8": torch.uint8,
    "float16": torch.float16,
    "float32": torch.float32,
    "bfloat16": torch.bfloat16,
}


def quantize_model(
    model_name,
    quant_type_4,
    double_quant_4,
    compute_type_4,
    quant_storage_4,
    auth_token=None,
    progress=gr.Progress(),
):
    progress(0, desc="Loading model")

    # Configure quantization
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type=quant_type_4,
        bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False,
        bnb_4bit_quant_storage=DTYPE_MAPPING[quant_storage_4],
        bnb_4bit_compute_dtype=DTYPE_MAPPING[compute_type_4],
    )

    # Load model
    model = AutoModel.from_pretrained(
        model_name,
        quantization_config=quantization_config,
        device_map="cpu",
        use_auth_token=auth_token.token,
        torch_dtype="auto",
    )
    progress(0.33, desc="Quantizing")

    # Quantize model
    # Calculate original model sizeo
    original_size_gb = get_model_size(model)

    modules = list(model.named_modules())
    for idx, (_, module) in enumerate(modules):
        if isinstance(module, Linear4bit):
            module.to("cuda")
            module.to("cpu")
        progress(0.33 + (0.33 * idx / len(modules)), desc="Quantizing")

    progress(0.66, desc="Quantized successfully")
    return model, original_size_gb


def save_model(
    model,
    model_name,
    original_size_gb,
    quant_type_4,
    double_quant_4,
    compute_type_4,
    quant_storage_4,
    username=None,
    auth_token=None,
    quantized_model_name=None,
    public=False,
    upload_to_community=False,
    progress=gr.Progress(),
):
    progress(0.67, desc="Preparing to push")

    with tempfile.TemporaryDirectory() as tmpdirname:
        # Save model
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token.token)
        tokenizer.save_pretrained(tmpdirname, safe_serialization=True, use_auth_token=auth_token.token)
        model.save_pretrained(
            tmpdirname, safe_serialization=True, use_auth_token=auth_token.token
        )
        progress(0.75, desc="Preparing to push")

        # Prepare repo name and model card
        if upload_to_community:
            repo_name = f"bnb-community/{model_name.split('/')[-1]}-bnb-4bit"
        else:
            if quantized_model_name:
                repo_name = f"{username}/{quantized_model_name}"
            else:
                repo_name = f"{username}/{model_name.split('/')[-1]}-bnb-4bit"

        model_card = create_model_card(
            model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4
        )
        with open(os.path.join(tmpdirname, "README.md"), "w") as f:
            f.write(model_card)
        progress(0.80, desc="Model card created")

        # Push to Hub
        api = HfApi(token=auth_token.token)
        api.create_repo(repo_name, exist_ok=True, private=not public)
        progress(0.85, desc="Pushing to Hub")

        # Upload files
        api.upload_folder(
            folder_path=tmpdirname,
            repo_id=repo_name,
            repo_type="model",
        )
        progress(0.95, desc="Model pushed to Hub")

    # Get model architecture as string
    import io
    from contextlib import redirect_stdout
    import html

    # Capture the model architecture string
    f = io.StringIO()
    with redirect_stdout(f):
        print(model)
    model_architecture_str = f.getvalue()

    # Escape HTML characters and format with line breaks
    model_architecture_str_html = html.escape(model_architecture_str).replace(
        "\n", "<br/>"
    )

    # Format it for display in markdown with proper styling
    model_architecture_info = f"""
    <div class="model-architecture-container" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;">
        <h3 style="margin-top: 0; color: #2E7D32;">📋 Model Architecture</h3>
        <div class="model-architecture" style="max-height: 500px; overflow-y: auto; overflow-x: auto; background-color: #f5f5f5; padding: 5px; border-radius: 8px; font-family: monospace; white-space: pre-wrap;">
        <div style="line-height: 1.2; font-size: 0.75em;">{model_architecture_str_html}</div>
        </div>
    </div>
    """

    model_size_info = f"""
    <div class="model-size-info" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;">
        <h3 style="margin-top: 0; color: #2E7D32;">📦 Model Size</h3>
        <p>Original (bf16)≈ {original_size_gb} GB → Quantized ≈ {get_model_size(model)} GB</p>
    </div>
    """

    repo_link = f"""
    <div class="repo-link" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;">
        <h3 style="margin-top: 0; color: #2E7D32;">🔗 Repository Link</h3>
        <p>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a></p>
    </div>
    """
    return f'<h1>🎉 Quantization Completed</h1><br/>{repo_link}{model_size_info}{model_architecture_info}'


def quantize_and_save(
    profile: gr.OAuthProfile | None,
    oauth_token: gr.OAuthToken | None,
    model_name,
    quant_type_4,
    double_quant_4,
    compute_type_4,
    quant_storage_4,
    quantized_model_name,
    public,
    upload_to_community,
    progress=gr.Progress(),
):
    if oauth_token is None:
        return """
        <div class="error-box">
            <h3>❌ Authentication Error</h3>
            <p>Please sign in to your HuggingFace account to use the quantizer.</p>
        </div>
        """
    if not profile:
        return """
        <div class="error-box">
            <h3>❌ Authentication Error</h3>
            <p>Please sign in to your HuggingFace account to use the quantizer.</p>
        </div>
        """
    exists_message = check_model_exists(
        oauth_token, profile.username, model_name, quantized_model_name, upload_to_community
    )
    if exists_message:
        return f"""
        <div class="warning-box">
            <h3>⚠️ Model Already Exists</h3>
            <p>{exists_message}</p>
        </div>
        """
    try:
        # Download phase
        progress(0, desc="Starting quantization process")
        quantized_model, original_size_gb = quantize_model(
            model_name,
            quant_type_4,
            double_quant_4,
            compute_type_4,
            quant_storage_4,
            oauth_token,
            progress,
        )
        final_message = save_model(
            quantized_model,
            model_name,
            original_size_gb,
            quant_type_4,
            double_quant_4,
            compute_type_4,
            quant_storage_4,
            profile.username,
            oauth_token,
            quantized_model_name,
            public,
            upload_to_community,
            progress,
        )
        # Clean up the model to free memory
        del quantized_model
        # Force garbage collection to release memory
        import gc
        gc.collect()
        
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            
        progress(1.0, desc="Memory cleaned")
        return final_message

    except Exception as e:
        error_message = str(e).replace("\n", "<br/>")
        return f"""
        <div class="error-box">
            <h3>❌ Error Occurred</h3>
            <p>{error_message}</p>
        </div>
        """
def get_model_size(model):
    """
    Calculate the size of a PyTorch model in gigabytes.
    
    Args:
        model: PyTorch model
        
    Returns:
        float: Size of the model in GB
    """
    # Get model state dict
    state_dict = model.state_dict()
    
    # Calculate total size in bytes
    total_size = 0
    for param in state_dict.values():
        # Calculate bytes for each parameter
        total_size += param.nelement() * param.element_size()
    
    # Convert bytes to gigabytes (1 GB = 1,073,741,824 bytes)
    size_gb = total_size / (1024 ** 3)
    size_gb = round(size_gb, 2)
    
    return size_gb

css = """/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}

/* Fix alignment for radio buttons and checkboxes */
.gradio-radio {
    display: flex !important;
    align-items: center !important;
    margin: 10px 0 !important;
}

.gradio-checkbox {
    display: flex !important;
    align-items: center !important;
    margin: 10px 0 !important;
}

/* Ensure consistent spacing and alignment */
.gradio-dropdown, .gradio-textbox, .gradio-radio, .gradio-checkbox {
    margin-bottom: 12px !important;
    width: 100% !important;
}

/* Align radio buttons and checkboxes horizontally */
.option-row {
    display: flex !important;
    justify-content: space-between !important;
    align-items: center !important;
    gap: 20px !important;
    margin-bottom: 12px !important;
}

.option-row .gradio-radio, .option-row .gradio-checkbox {
    margin: 0 !important;
    flex: 1 !important;
}

/* Horizontally align radio button options with text */
.gradio-radio label {
    display: flex !important;
    align-items: center !important;
}

.gradio-radio input[type="radio"] {
    margin-right: 5px !important;
}

/* Remove padding and margin from model name textbox for better alignment */
.model-name-textbox {
    padding-left: 0 !important;
    padding-right: 0 !important;
    margin-left: 0 !important;
    margin-right: 0 !important;
}

/* Quantize button styling with glow effect */
button[variant="primary"] {
    background: linear-gradient(135deg, #3B82F6, #10B981) !important;
    color: white !important;
    padding: 16px 32px !important;
    font-size: 1.1rem !important;
    font-weight: 700 !important;
    border: none !important;
    border-radius: 12px !important;
    box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
    transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
    position: relative;
    overflow: hidden;
    animation: glow 1.5s ease-in-out infinite alternate;
}

button[variant="primary"]::before {
    content: "✨ ";
}

button[variant="primary"]:hover {
    transform: translateY(-5px) scale(1.05) !important;
    box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important;
}

@keyframes glow {
    from {
        box-shadow: 0 0 10px rgba(59, 130, 246, 0.5);
    }
    to {
        box-shadow: 0 0 20px rgba(59, 130, 246, 0.8), 0 0 30px rgba(16, 185, 129, 0.5);
    }
}

/* Login button styling with glow effect */
#login-button {
    background: linear-gradient(135deg, #3B82F6, #10B981) !important;
    color: white !important;
    font-weight: 700 !important;
    border: none !important;
    border-radius: 12px !important;
    box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
    transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
    position: relative;
    overflow: hidden;
    animation: glow 1.5s ease-in-out infinite alternate;
    max-width: 300px !important;
    margin: 0 auto !important;
}

#login-button::before {
    content: "🔑 ";
    display: inline-block !important;
    vertical-align: middle !important;
    margin-right: 5px !important;
    line-height: normal !important;
}

#login-button:hover {
    transform: translateY(-3px) scale(1.03) !important;
    box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important;
}

#login-button::after {
    content: "";
    position: absolute;
    top: 0;
    left: -100%;
    width: 100%;
    height: 100%;
    background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
    transition: 0.5s;
}

#login-button:hover::after {
    left: 100%;
}

/* Toggle instructions button styling */
#toggle-button {
    background: linear-gradient(135deg, #3B82F6, #10B981) !important;
    color: white !important;
    font-size: 0.85rem !important;
    font-weight: 600 !important;
    padding: 8px 16px !important;
    border: none !important;
    border-radius: 8px !important;
    box-shadow: 0 2px 10px rgba(59, 130, 246, 0.3) !important;
    transition: all 0.3s ease !important;
    margin: 0.5rem auto 1.5rem auto !important;
    display: block !important;
    max-width: 200px !important;
    text-align: center !important;
    position: relative;
    overflow: hidden;
}

#toggle-button:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 4px 12px rgba(59, 130, 246, 0.5) !important;
}

#toggle-button::after {
    content: "";
    position: absolute;
    top: 0;
    left: -100%;
    width: 100%;
    height: 100%;
    background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
    transition: 0.5s;
}

#toggle-button:hover::after {
    left: 100%;
}
/* Progress Bar Styles */
.progress-container {
    font-family: system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
    padding: 20px;
    background: white;
    border-radius: 12px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}

.progress-stage {
    font-size: 0.9rem;
    font-weight: 600;
    color: #64748b;
}

.progress-stage .stage {
    position: relative;
    padding: 8px 12px;
    border-radius: 6px;
    background: #f1f5f9;
    transition: all 0.3s ease;
}

.progress-stage .stage.completed {
    background: #ecfdf5;
}

.progress-bar {
    box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.1);
}
.progress {
    transition: width 0.8s cubic-bezier(0.4, 0, 0.2, 1);
    box-shadow: 0 2px 4px rgba(59, 130, 246, 0.3);
}
"""


with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
    gr.Markdown(
        """
        # 🤗 BitsAndBytes Quantizer : Create your own BNB Quants ! ✨


        <br/>
        <br/>
        """
    )

    gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)

    m1 = gr.Markdown()
    demo.load(hello, inputs=None, outputs=m1)

    instructions_visible = gr.State(False)

    with gr.Row():
        with gr.Column():
            with gr.Row():
                model_name = HuggingfaceHubSearch(
                    label="🔍 Hub Model ID",
                    placeholder="Search for model id on Huggingface",
                    search_type="model",
                )
            with gr.Row():
                with gr.Column():
                    gr.Markdown(
                        """
                        ### ⚙️ Model Quantization Type Settings
                        """
                    )
                    quant_type_4 = gr.Dropdown(
                        info="The quantization data type in the bnb.nn.Linear4Bit layers",
                        choices=["fp4", "nf4"],
                        value="nf4",
                        visible=True,
                        show_label=False,
                    )
                    compute_type_4 = gr.Dropdown(
                        info="The compute type for the model",
                        choices=["float16", "bfloat16", "float32"],
                        value="bfloat16",
                        visible=True,
                        show_label=False,
                    )
                    quant_storage_4 = gr.Dropdown(
                        info="The storage type for the model",
                        choices=["float16", "float32", "int8", "uint8", "bfloat16"],
                        value="uint8",
                        visible=True,
                        show_label=False,
                    )
                    gr.Markdown(
                        """
                        ### 🔄 Double Quantization Settings
                        """
                    )
                    with gr.Row(elem_classes="option-row"):
                        double_quant_4 = gr.Radio(
                            ["True", "False"],
                            info="Use Double Quant",
                            visible=True,
                            value="True",
                            show_label=False,
                        )
                    gr.Markdown(
                        """
                        ### 💾 Saving Settings
                        """
                    )
                    with gr.Row():
                        quantized_model_name = gr.Textbox(
                            label="✏️ Model Name",
                            info="Model Name (optional : to override default)",
                            value="",
                            interactive=True,
                            elem_classes="model-name-textbox",
                            show_label=False,
                        )

                    with gr.Row():
                        public = gr.Checkbox(
                            label="🌐 Make model public",
                            info="If checked, the model will be publicly accessible",
                            value=True,
                            interactive=True,
                            show_label=True,
                        )
                        
                    with gr.Row():
                        upload_to_community = gr.Checkbox(
                            label="🤗 Upload to bnb-community",
                            info="If checked, the model will be uploaded to the bnb-community organization \n(Give the space access to the bnb-community, if not already done revoke the token and login again)",
                            value=False,
                            interactive=True,
                            show_label=True,
                        )
                        
                    # Add event handler to disable and clear model name when uploading to community
                    def toggle_model_name(upload_to_community_checked):
                        return gr.update(
                            interactive=not upload_to_community_checked,
                            value="Can't change model name when uploading to community" if upload_to_community_checked else quantized_model_name.value
                        )
                    
                    upload_to_community.change(
                        fn=toggle_model_name,
                        inputs=[upload_to_community],
                        outputs=quantized_model_name
                    )

        with gr.Column():
            quantize_button = gr.Button(
                "🚀 Quantize and Push to the Hub", variant="primary"
            )
            output_link = gr.Markdown(
                "🔗 Quantized Model Info", container=True, min_height=200
            )

    quantize_button.click(
        fn=quantize_and_save,
        inputs=[
            model_name,
            quant_type_4,
            double_quant_4,
            compute_type_4,
            quant_storage_4,
            quantized_model_name,
            public,
            upload_to_community,
        ],
        outputs=[output_link],
        show_progress="full",
    )
    # Add information section about the app options
    with gr.Accordion("📚 About this app", open=True):
        gr.Markdown(
            """
            ## 📝 Notes on Quantization Options
            
            ### Quantization Type (bnb_4bit_quant_type)
            - **fp4**: Floating-point 4-bit quantization.
            - **nf4**: Normal float 4-bit quantization.
            
            ### Double Quantization
            - **True**: Applies a second round of quantization to the quantization constants, further reducing memory usage.
            - **False**: Uses standard quantization only.
            
            ### Model Saving Options
            - **Model Name**: Custom name for your quantized model on the Hub. If left empty, a default name will be generated.
            - **Make model public**: If checked, anyone can access your quantized model. If unchecked, only you can access it.
            
            ## 🔍 How It Works
            This app uses the BitsAndBytes library to perform 4-bit quantization on Transformer models. The process:
            1. Downloads the original model
            2. Applies the selected quantization settings
            3. Uploads the quantized model to your HuggingFace account
            
            ## 📊 Memory Usage
            4-bit quantization can reduce model size by up to ≈75% compared to FP16 for big models.
            """
        )

if __name__ == "__main__":
    demo.launch(share=True)