Spaces:
Running
on
A10G
Running
on
A10G
File size: 22,010 Bytes
fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 fa23c0d 00178b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
import gradio as gr
import torch
from transformers import AutoModel, BitsAndBytesConfig
import tempfile
from huggingface_hub import HfApi
from huggingface_hub import list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bitsandbytes.nn import Linear4bit
from packaging import version
import os
from tqdm import tqdm
def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
# ^ expect a gr.OAuthProfile object as input to get the user's profile
# if the user is not logged in, profile will be None
if profile is None:
return "Hello Please Login to HuggingFace to use the BitsAndBytes Quantizer!"
return f"Hello {profile.name} ! Welcome to BitsAndBytes Quantizer"
def check_model_exists(oauth_token: gr.OAuthToken | None, username, model_name, quantized_model_name):
"""Check if a model exists in the user's Hugging Face repository."""
try:
models = list_models(author=username, token=oauth_token.token)
model_names = [model.id for model in models]
if quantized_model_name :
repo_name = f"{username}/{quantized_model_name}"
else :
repo_name = f"{username}/{model_name.split('/')[-1]}-bnb-4bit"
if repo_name in model_names:
return f"Model '{repo_name}' already exists in your repository."
else:
return None # Model does not exist
except Exception as e:
return f"Error checking model existence: {str(e)}"
def create_model_card(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4):
model_card = f"""---
base_model:
- {model_name}
---
# {model_name} (Quantized)
## Description
This model is a quantized version of the original model `{model_name}`. It has been quantized using int4 quantization with bitsandbytes.
## Quantization Details
- **Quantization Type**: int4
- **bnb_4bit_quant_type**: {quant_type_4}
- **bnb_4bit_use_double_quant**: {double_quant_4}
- **bnb_4bit_compute_dtype**: {compute_type_4}
- **bnb_4bit_quant_storage**: {quant_storage_4}
## Usage
You can use this model in your applications by loading it directly from the Hugging Face Hub:
```python
from transformers import AutoModel
model = AutoModel.from_pretrained("{model_name}")"""
return model_card
DTYPE_MAPPING = {
"int8": torch.int8,
"uint8": torch.uint8,
"float16": torch.float16,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
def quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, auth_token=None, progress=gr.Progress()):
progress(0, desc="Starting")
print(f"Quantizing model: {quant_type_4}")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type=quant_type_4,
bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False,
bnb_4bit_quant_storage=DTYPE_MAPPING[quant_storage_4],
bnb_4bit_compute_dtype=DTYPE_MAPPING[compute_type_4],
)
model = AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token, torch_dtype=torch.bfloat16)
for _ , module in progress.tqdm(model.named_modules(), desc="Quantizing model", total=len(list(model.named_modules())), unit="layers"):
if isinstance(module, Linear4bit):
module.to("cuda")
module.to("cpu")
return model
def save_model(model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, username=None, auth_token=None, quantized_model_name=None, public=False):
print("Saving quantized model")
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, safe_serialization=True, use_auth_token=auth_token.token)
if quantized_model_name :
repo_name = f"{username}/{quantized_model_name}"
else :
repo_name = f"{username}/{model_name.split('/')[-1]}-bnb-4bit"
model_card = create_model_card(repo_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4)
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
f.write(model_card)
# Push to Hub
api = HfApi(token=auth_token.token)
api.create_repo(repo_name, exist_ok=True, private=not public)
api.upload_folder(
folder_path=tmpdirname,
repo_id=repo_name,
repo_type="model",
)
# Get model architecture as string
import io
from contextlib import redirect_stdout
import html
# Capture the model architecture string
f = io.StringIO()
with redirect_stdout(f):
print(model)
model_architecture_str = f.getvalue()
# Escape HTML characters and format with line breaks
model_architecture_str_html = html.escape(model_architecture_str).replace('\n', '<br/>')
# Format it for display in markdown with proper styling
model_architecture_info = f"""
<div class="model-architecture" style="max-height: 500px; overflow-y: auto; overflow-x: auto; background-color: #f5f5f5; padding: 5px; border-radius: 8px; font-family: monospace; white-space: pre-wrap;">
<div style="line-height: 1.2; font-size: 0.75em;">{model_architecture_str_html}</div>
</div>
"""
return f'🔗 Quantized Model <br/><h1> 🤗 DONE</h1><br/>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a><br/><br/>📊 Model Architecture<br/>{model_architecture_info}'
def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public):
if oauth_token is None :
return """
<div class="error-box">
<h3>❌ Authentication Error</h3>
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
</div>
"""
if not profile:
return """
<div class="error-box">
<h3>❌ Authentication Error</h3>
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
</div>
"""
exists_message = check_model_exists(oauth_token, profile.username, model_name, quantized_model_name)
if exists_message :
return f"""
<div class="warning-box">
<h3>⚠️ Model Already Exists</h3>
<p>{exists_message}</p>
</div>
"""
try:
# Download phase
quantized_model = quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, oauth_token)
final_message = save_model(quantized_model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, profile.username, oauth_token, quantized_model_name, public)
return final_message
except Exception as e :
error_message = str(e).replace('\n', '<br/>')
return f"""
<div class="error-box">
<h3>❌ Error Occurred</h3>
<p>{error_message}</p>
</div>
"""
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
/* Fix alignment for radio buttons and checkboxes */
.gradio-radio {
display: flex !important;
align-items: center !important;
margin: 10px 0 !important;
}
.gradio-checkbox {
display: flex !important;
align-items: center !important;
margin: 10px 0 !important;
}
/* Ensure consistent spacing and alignment */
.gradio-dropdown, .gradio-textbox, .gradio-radio, .gradio-checkbox {
margin-bottom: 12px !important;
width: 100% !important;
}
/* Align radio buttons and checkboxes horizontally */
.option-row {
display: flex !important;
justify-content: space-between !important;
align-items: center !important;
gap: 20px !important;
margin-bottom: 12px !important;
}
.option-row .gradio-radio, .option-row .gradio-checkbox {
margin: 0 !important;
flex: 1 !important;
}
/* Horizontally align radio button options with text */
.gradio-radio label {
display: flex !important;
align-items: center !important;
}
.gradio-radio input[type="radio"] {
margin-right: 5px !important;
}
/* Remove padding and margin from model name textbox for better alignment */
.model-name-textbox {
padding-left: 0 !important;
padding-right: 0 !important;
margin-left: 0 !important;
margin-right: 0 !important;
}
/* Quantize button styling with glow effect */
button[variant="primary"] {
background: linear-gradient(135deg, #3B82F6, #10B981) !important;
color: white !important;
padding: 16px 32px !important;
font-size: 1.1rem !important;
font-weight: 700 !important;
border: none !important;
border-radius: 12px !important;
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
position: relative;
overflow: hidden;
animation: glow 1.5s ease-in-out infinite alternate;
}
button[variant="primary"]::before {
content: "✨ ";
}
button[variant="primary"]:hover {
transform: translateY(-5px) scale(1.05) !important;
box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important;
}
@keyframes glow {
from {
box-shadow: 0 0 10px rgba(59, 130, 246, 0.5);
}
to {
box-shadow: 0 0 20px rgba(59, 130, 246, 0.8), 0 0 30px rgba(16, 185, 129, 0.5);
}
}
/* Login button styling with glow effect */
#login-button {
background: linear-gradient(135deg, #3B82F6, #10B981) !important;
color: white !important;
font-weight: 700 !important;
border: none !important;
border-radius: 12px !important;
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
position: relative;
overflow: hidden;
animation: glow 1.5s ease-in-out infinite alternate;
max-width: 300px !important;
margin: 0 auto !important;
}
#login-button::before {
content: "🔑 ";
display: inline-block !important;
vertical-align: middle !important;
margin-right: 5px !important;
line-height: normal !important;
}
#login-button:hover {
transform: translateY(-3px) scale(1.03) !important;
box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important;
}
#login-button::after {
content: "";
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: 0.5s;
}
#login-button:hover::after {
left: 100%;
}
/* Toggle instructions button styling */
#toggle-button {
background: linear-gradient(135deg, #3B82F6, #10B981) !important;
color: white !important;
font-size: 0.85rem !important;
font-weight: 600 !important;
padding: 8px 16px !important;
border: none !important;
border-radius: 8px !important;
box-shadow: 0 2px 10px rgba(59, 130, 246, 0.3) !important;
transition: all 0.3s ease !important;
margin: 0.5rem auto 1.5rem auto !important;
display: block !important;
max-width: 200px !important;
text-align: center !important;
position: relative;
overflow: hidden;
}
#toggle-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 12px rgba(59, 130, 246, 0.5) !important;
}
#toggle-button::after {
content: "";
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: 0.5s;
}
#toggle-button:hover::after {
left: 100%;
}
/* Progress Bar Styles */
.progress-container {
font-family: system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
padding: 20px;
background: white;
border-radius: 12px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.progress-stage {
font-size: 0.9rem;
font-weight: 600;
color: #64748b;
}
.progress-stage .stage {
position: relative;
padding: 8px 12px;
border-radius: 6px;
background: #f1f5f9;
transition: all 0.3s ease;
}
.progress-stage .stage.completed {
background: #ecfdf5;
}
.progress-bar {
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.1);
}
.progress {
transition: width 0.8s cubic-bezier(0.4, 0, 0.2, 1);
box-shadow: 0 2px 4px rgba(59, 130, 246, 0.3);
}
"""
def quantize_model_with_progress(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, auth_token, progress=gr.Progress()):
"""Quantize model with progress updates."""
progress(0, desc="Loading model")
# Configure quantization
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type=quant_type_4,
bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False,
bnb_4bit_quant_storage=DTYPE_MAPPING[quant_storage_4],
bnb_4bit_compute_dtype=DTYPE_MAPPING[compute_type_4],
)
# Load model
model = AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token, torch_dtype=torch.bfloat16)
progress(0.33, desc="Quantizing")
# Quantize model
modules = list(model.named_modules())
for idx, (_, module) in enumerate(modules):
if isinstance(module, Linear4bit):
module.to("cuda")
module.to("cpu")
progress(0.33 + (0.33 * idx / len(modules)), desc="Quantizing")
progress(0.66, desc="Quantized successfully")
return model
def save_model_with_progress(model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, username=None, auth_token=None, quantized_model_name=None, public=False, progress=gr.Progress()):
"""Save model with progress updates."""
progress(0.67, desc="Preparing to push")
with tempfile.TemporaryDirectory() as tmpdirname:
# Save model
model.save_pretrained(tmpdirname, safe_serialization=True, use_auth_token=auth_token.token)
progress(0.75, desc="Preparing to push")
# Prepare repo name and model card
if quantized_model_name:
repo_name = f"{username}/{quantized_model_name}"
else:
repo_name = f"{username}/{model_name.split('/')[-1]}-bnb-4bit"
model_card = create_model_card(repo_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4)
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
f.write(model_card)
progress(0.80, desc="Model card created")
# Push to Hub
api = HfApi(token=auth_token.token)
api.create_repo(repo_name, exist_ok=True, private=not public)
progress(0.85, desc="Pushing to Hub")
# Upload files
api.upload_folder(
folder_path=tmpdirname,
repo_id=repo_name,
repo_type="model",
)
progress(1.00, desc="Model pushed to Hub")
# Get model architecture as string
import io
from contextlib import redirect_stdout
import html
# Capture the model architecture string
f = io.StringIO()
with redirect_stdout(f):
print(model)
model_architecture_str = f.getvalue()
# Escape HTML characters and format with line breaks
model_architecture_str_html = html.escape(model_architecture_str).replace('\n', '<br/>')
# Format it for display in markdown with proper styling
model_architecture_info = f"""
<div class="model-architecture" style="max-height: 500px; overflow-y: auto; overflow-x: auto; background-color: #f5f5f5; padding: 5px; border-radius: 8px; font-family: monospace; white-space: pre-wrap;">
<div style="line-height: 1.2; font-size: 0.75em;">{model_architecture_str_html}</div>
</div>
"""
return f'🔗 Quantized Model <br/><h1> 🤗 DONE</h1><br/>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a><br/><br/>📊 Model Architecture<br/>{model_architecture_info}'
def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public, progress=gr.Progress()):
if oauth_token is None:
return """
<div class="error-box">
<h3>❌ Authentication Error</h3>
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
</div>
"""
if not profile:
return """
<div class="error-box">
<h3>❌ Authentication Error</h3>
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
</div>
"""
exists_message = check_model_exists(oauth_token, profile.username, model_name, quantized_model_name)
if exists_message:
return f"""
<div class="warning-box">
<h3>⚠️ Model Already Exists</h3>
<p>{exists_message}</p>
</div>
"""
try:
# Download and quantize phase
progress(0, desc="Starting quantization process")
quantized_model = quantize_model_with_progress(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, oauth_token, progress)
# Save and push phase
final_message = save_model_with_progress(quantized_model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, profile.username, oauth_token, quantized_model_name, public, progress)
return final_message
except Exception as e:
error_message = str(e).replace('\n', '<br/>')
return f"""
<div class="error-box">
<h3>❌ Error Occurred</h3>
<p>{error_message}</p>
</div>
"""
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
gr.Markdown(
"""
# 🤗 LLM Model BitsAndBytes Quantizer ✨
"""
)
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)
m1 = gr.Markdown()
demo.load(hello, inputs=None, outputs=m1)
instructions_visible = gr.State(False)
with gr.Row():
with gr.Column():
with gr.Row():
model_name = HuggingfaceHubSearch(
label="🔍 Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
### ⚙️ Model Quantization Type Settings
"""
)
quant_type_4 = gr.Dropdown(
info="The quantization data type in the bnb.nn.Linear4Bit layers",
choices=["fp4", "nf4"],
value="nf4",
visible=True,
show_label=False
)
compute_type_4 = gr.Dropdown(
info="The compute type for the model",
choices=["float16", "bfloat16", "float32"],
value="bfloat16",
visible=True,
show_label=False
)
quant_storage_4 = gr.Dropdown(
info="The storage type for the model",
choices=["float16", "float32", "int8", "uint8", "bfloat16"],
value="uint8",
visible=True,
show_label=False
)
gr.Markdown(
"""
### 🔄 Double Quantization Settings
"""
)
with gr.Row(elem_classes="option-row"):
double_quant_4 = gr.Radio(
["True", "False"],
info="Use Double Quant",
visible=True,
value="True",
show_label=False
)
gr.Markdown(
"""
### 💾 Saving Settings
"""
)
with gr.Row():
quantized_model_name = gr.Textbox(
label="✏️ Model Name",
info="Model Name (optional : to override default)",
value="",
interactive=True,
elem_classes="model-name-textbox",
show_label=False,
)
with gr.Row():
public = gr.Checkbox(
label="🌐 Make model public",
info="If checked, the model will be publicly accessible",
value=True,
interactive=True,
show_label=True
)
with gr.Column():
quantize_button = gr.Button("🚀 Quantize and Push to the Hub", variant="primary")
output_link = gr.Markdown("🔗 Quantized Model", container=True, min_height=100)
quantize_button.click(
fn=quantize_and_save,
inputs=[model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public],
outputs=[output_link],
)
if __name__ == "__main__":
demo.launch(share=True)
|