Spaces:
Running
Running
File size: 15,128 Bytes
1455b85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import torch
import torch.nn as nn
from torch.nn import Module, Conv2d, Parameter, Softmax
class PAM_Module(Module):
""" Position attention module"""
#Ref from SAGAN
def __init__(self, in_dim):
super(PAM_Module, self).__init__()
self.chanel_in = in_dim
self.query_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.key_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.value_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = Parameter(torch.zeros(1))
self.softmax = Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X H X W)
returns :
out : attention value + input feature
attention: B X (HxW) X (HxW)
"""
m_batchsize, C, height, width = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width*height).permute(0, 2, 1)
proj_key = self.key_conv(x).view(m_batchsize, -1, width*height)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = self.value_conv(x).view(m_batchsize, -1, width*height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, C, height, width)
out = self.gamma*out + x
return out
class CAM_Module(Module):
""" Channel attention module"""
def __init__(self, in_dim):
super(CAM_Module, self).__init__()
self.chanel_in = in_dim
self.gamma = Parameter(torch.zeros(1))
self.softmax = Softmax(dim=-1)
def forward(self,x):
"""
inputs :
x : input feature maps( B X C X H X W)
returns :
out : attention value + input feature
attention: B X C X C
"""
m_batchsize, C, height, width = x.size()
proj_query = x.view(m_batchsize, C, -1)
proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1)
energy = torch.bmm(proj_query, proj_key)
energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy
attention = self.softmax(energy_new)
proj_value = x.view(m_batchsize, C, -1)
out = torch.bmm(attention, proj_value)
out = out.view(m_batchsize, C, height, width)
out = self.gamma*out + x
return out
class UPx2(nn.Module):
'''
This class defines the convolution layer with batch normalization and PReLU activation
'''
def __init__(self, nIn, nOut):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: stride rate for down-sampling. Default is 1
'''
super().__init__()
self.deconv = nn.ConvTranspose2d(nIn, nOut, 2, stride=2, padding=0, output_padding=0, bias=False)
self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
self.act = nn.PReLU(nOut)
def forward(self, input):
'''
:param input: input feature map
:return: transformed feature map
'''
output = self.deconv(input)
output = self.bn(output)
output = self.act(output)
return output
def fuseforward(self, input):
output = self.deconv(input)
output = self.act(output)
return output
class CBR(nn.Module):
'''
This class defines the convolution layer with batch normalization and PReLU activation
'''
def __init__(self, nIn, nOut, kSize, stride=1):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: stride rate for down-sampling. Default is 1
'''
super().__init__()
padding = int((kSize - 1)/2)
#self.conv = nn.Conv2d(nIn, nOut, kSize, stride=stride, padding=padding, bias=False)
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
#self.conv1 = nn.Conv2d(nOut, nOut, (1, kSize), stride=1, padding=(0, padding), bias=False)
self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
self.act = nn.PReLU(nOut)
def forward(self, input):
'''
:param input: input feature map
:return: transformed feature map
'''
output = self.conv(input)
#output = self.conv1(output)
output = self.bn(output)
output = self.act(output)
return output
def fuseforward(self, input):
output = self.conv(input)
output = self.act(output)
return output
class CB(nn.Module):
'''
This class groups the convolution and batch normalization
'''
def __init__(self, nIn, nOut, kSize, stride=1):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: optinal stide for down-sampling
'''
super().__init__()
padding = int((kSize - 1)/2)
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
def forward(self, input):
'''
:param input: input feature map
:return: transformed feature map
'''
output = self.conv(input)
output = self.bn(output)
return output
class C(nn.Module):
'''
This class is for a convolutional layer.
'''
def __init__(self, nIn, nOut, kSize, stride=1):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: optional stride rate for down-sampling
'''
super().__init__()
padding = int((kSize - 1)/2)
# print(nIn, nOut, (kSize, kSize))
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
def forward(self, input):
'''
:param input: input feature map
:return: transformed feature map
'''
output = self.conv(input)
return output
class CDilated(nn.Module):
'''
This class defines the dilated convolution.
'''
def __init__(self, nIn, nOut, kSize, stride=1, d=1):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: optional stride rate for down-sampling
:param d: optional dilation rate
'''
super().__init__()
padding = int((kSize - 1)/2) * d
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False, dilation=d)
def forward(self, input):
'''
:param input: input feature map
:return: transformed feature map
'''
output = self.conv(input)
return output
class DownSamplerB(nn.Module):
def __init__(self, nIn, nOut):
super().__init__()
n = int(nOut/5)
n1 = nOut - 4*n
self.c1 = C(nIn, n, 3, 2)
self.d1 = CDilated(n, n1, 3, 1, 1)
self.d2 = CDilated(n, n, 3, 1, 2)
self.d4 = CDilated(n, n, 3, 1, 4)
self.d8 = CDilated(n, n, 3, 1, 8)
self.d16 = CDilated(n, n, 3, 1, 16)
self.bn = nn.BatchNorm2d(nOut, eps=1e-3)
self.act = nn.PReLU(nOut)
def forward(self, input):
output1 = self.c1(input)
d1 = self.d1(output1)
d2 = self.d2(output1)
d4 = self.d4(output1)
d8 = self.d8(output1)
d16 = self.d16(output1)
add1 = d2
add2 = add1 + d4
add3 = add2 + d8
add4 = add3 + d16
combine = torch.cat([d1, add1, add2, add3, add4],1)
#combine_in_out = input + combine
output = self.bn(combine)
output = self.act(output)
return output
class BR(nn.Module):
'''
This class groups the batch normalization and PReLU activation
'''
def __init__(self, nOut):
'''
:param nOut: output feature maps
'''
super().__init__()
self.nOut=nOut
self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
self.act = nn.PReLU(nOut)
def forward(self, input):
'''
:param input: input feature map
:return: normalized and thresholded feature map
'''
# print("bf bn :",input.size(),self.nOut)
output = self.bn(input)
# print("after bn :",output.size())
output = self.act(output)
# print("after act :",output.size())
return output
class DilatedParllelResidualBlockB(nn.Module):
'''
This class defines the ESP block, which is based on the following principle
Reduce ---> Split ---> Transform --> Merge
'''
def __init__(self, nIn, nOut, add=True):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param add: if true, add a residual connection through identity operation. You can use projection too as
in ResNet paper, but we avoid to use it if the dimensions are not the same because we do not want to
increase the module complexity
'''
super().__init__()
n = max(int(nOut/5),1)
n1 = max(nOut - 4*n,1)
# print(nIn,n,n1,"--")
self.c1 = C(nIn, n, 1, 1)
self.d1 = CDilated(n, n1, 3, 1, 1) # dilation rate of 2^0
self.d2 = CDilated(n, n, 3, 1, 2) # dilation rate of 2^1
self.d4 = CDilated(n, n, 3, 1, 4) # dilation rate of 2^2
self.d8 = CDilated(n, n, 3, 1, 8) # dilation rate of 2^3
self.d16 = CDilated(n, n, 3, 1, 16) # dilation rate of 2^4
# print("nOut bf :",nOut)
self.bn = BR(nOut)
# print("nOut at :",self.bn.size())
self.add = add
def forward(self, input):
'''
:param input: input feature map
:return: transformed feature map
'''
# reduce
output1 = self.c1(input)
# split and transform
d1 = self.d1(output1)
d2 = self.d2(output1)
d4 = self.d4(output1)
d8 = self.d8(output1)
d16 = self.d16(output1)
# heirarchical fusion for de-gridding
add1 = d2
add2 = add1 + d4
add3 = add2 + d8
add4 = add3 + d16
# print(d1.size(),add1.size(),add2.size(),add3.size(),add4.size())
#merge
combine = torch.cat([d1, add1, add2, add3, add4], 1)
# print("combine :",combine.size())
# if residual version
if self.add:
# print("add :",combine.size())
combine = input + combine
# print(combine.size(),"-----------------")
output = self.bn(combine)
return output
class InputProjectionA(nn.Module):
'''
This class projects the input image to the same spatial dimensions as the feature map.
For example, if the input image is 512 x512 x3 and spatial dimensions of feature map size are 56x56xF, then
this class will generate an output of 56x56x3
'''
def __init__(self, samplingTimes):
'''
:param samplingTimes: The rate at which you want to down-sample the image
'''
super().__init__()
self.pool = nn.ModuleList()
for i in range(0, samplingTimes):
#pyramid-based approach for down-sampling
self.pool.append(nn.AvgPool2d(3, stride=2, padding=1))
def forward(self, input):
'''
:param input: Input RGB Image
:return: down-sampled image (pyramid-based approach)
'''
for pool in self.pool:
input = pool(input)
return input
class ESPNet_Encoder(nn.Module):
'''
This class defines the ESPNet-C network in the paper
'''
def __init__(self, p=5, q=3):
# def __init__(self, classes=20, p=1, q=1):
'''
:param classes: number of classes in the dataset. Default is 20 for the cityscapes
:param p: depth multiplier
:param q: depth multiplier
'''
super().__init__()
self.level1 = CBR(3, 16, 3, 2)
self.sample1 = InputProjectionA(1)
self.sample2 = InputProjectionA(2)
self.b1 = CBR(16 + 3,19,3)
self.level2_0 = DownSamplerB(16 +3, 64)
self.level2 = nn.ModuleList()
for i in range(0, p):
self.level2.append(DilatedParllelResidualBlockB(64 , 64))
self.b2 = CBR(128 + 3,131,3)
self.level3_0 = DownSamplerB(128 + 3, 128)
self.level3 = nn.ModuleList()
for i in range(0, q):
self.level3.append(DilatedParllelResidualBlockB(128 , 128))
# self.mixstyle = MixStyle2(p=0.5, alpha=0.1)
self.b3 = CBR(256,32,3)
self.sa = PAM_Module(32)
self.sc = CAM_Module(32)
self.conv_sa = CBR(32,32,3)
self.conv_sc = CBR(32,32,3)
self.classifier = CBR(32, 32, 1, 1)
def forward(self, input):
'''
:param input: Receives the input RGB image
:return: the transformed feature map with spatial dimensions 1/8th of the input image
'''
output0 = self.level1(input)
inp1 = self.sample1(input)
inp2 = self.sample2(input)
output0_cat = self.b1(torch.cat([output0, inp1], 1))
output1_0 = self.level2_0(output0_cat) # down-sampled
for i, layer in enumerate(self.level2):
if i==0:
output1 = layer(output1_0)
else:
output1 = layer(output1)
output1_cat = self.b2(torch.cat([output1, output1_0, inp2], 1))
output2_0 = self.level3_0(output1_cat) # down-sampled
for i, layer in enumerate(self.level3):
if i==0:
output2 = layer(output2_0)
else:
output2 = layer(output2)
cat_=torch.cat([output2_0, output2], 1)
output2_cat = self.b3(cat_)
out_sa=self.sa(output2_cat)
out_sa=self.conv_sa(out_sa)
out_sc=self.sc(output2_cat)
out_sc=self.conv_sc(out_sc)
out_s=out_sa+out_sc
classifier = self.classifier(out_s)
return classifier
class TwinLiteNet(nn.Module):
'''
This class defines the ESPNet network
'''
def __init__(self, p=2, q=3, ):
super().__init__()
self.encoder = ESPNet_Encoder(p, q)
self.up_1_1 = UPx2(32,16)
self.up_2_1 = UPx2(16,8)
self.up_1_2 = UPx2(32,16)
self.up_2_2 = UPx2(16,8)
self.classifier_1 = UPx2(8,2)
self.classifier_2 = UPx2(8,2)
def forward(self, input):
x=self.encoder(input)
x1=self.up_1_1(x)
x1=self.up_2_1(x1)
classifier1=self.classifier_1(x1)
x2=self.up_1_2(x)
x2=self.up_2_2(x2)
classifier2=self.classifier_2(x2)
return (classifier1,classifier2)
|