import spaces import gradio as gr from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, LlavaForConditionalGeneration, TextIteratorStreamer import torch import torch.amp.autocast_mode from PIL import Image import torchvision.transforms.functional as TVF from threading import Thread from typing import Generator MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava" TITLE = "

JoyCaption Beta One - (2025-05-10a)

" DESCRIPTION = """

**This model cannot see any chat history.**

🚨🚨🚨 If the "Help improve JoyCaption" box is checked, the _text_ query you write will be logged and I _might_ use it to help improve JoyCaption. It does not log images, user data, etc; only the text query. I cannot see what images you send, and frankly, I don't want to. But knowing what kinds of instructions and queries users want JoyCaption to handle will help guide me in building JoyCaption's dataset. This dataset will be made public. As always, the model itself is completely public and free to use outside of this space. And, of course, I have no control nor access to what HuggingFace, which are graciously hosting this space, collects.

""" PLACEHOLDER = """ """ # Load model tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=True) assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Expected PreTrainedTokenizer, got {type(tokenizer)}" model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0) assert isinstance(model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(model)}" def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]: # Trim off the prompt while True: try: i = input_ids.index(eoh_id) except ValueError: break input_ids = input_ids[i + 1:] # Trim off the end try: i = input_ids.index(eot_id) except ValueError: return input_ids return input_ids[:i] end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>") end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>") assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int) @spaces.GPU() @torch.no_grad() def chat_joycaption(message: dict, history, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]: torch.cuda.empty_cache() chat_interface.chatbot_state # Prompts are always stripped in training for now prompt = message['text'].strip() # Load image if "files" not in message or len(message["files"]) != 1: yield "ERROR: This model requires exactly one image as input." return image = Image.open(message["files"][0]) # Log the prompt if log_prompt: print(f"Prompt: {prompt}") # Preprocess image # NOTE: I found the default processor for so400M to have worse results than just using PIL directly if image.size != (384, 384): image = image.resize((384, 384), Image.LANCZOS) image = image.convert("RGB") pixel_values = TVF.pil_to_tensor(image) convo = [ { "role": "system", "content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions.", }, { "role": "user", "content": prompt, }, ] # Format the conversation convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True) assert isinstance(convo_string, str) # Tokenize the conversation convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False) # Repeat the image tokens input_tokens = [] for token in convo_tokens: if token == model.config.image_token_index: input_tokens.extend([model.config.image_token_index] * model.config.image_seq_length) else: input_tokens.append(token) input_ids = torch.tensor(input_tokens, dtype=torch.long) attention_mask = torch.ones_like(input_ids) # Move to GPU input_ids = input_ids.unsqueeze(0).to("cuda") attention_mask = attention_mask.unsqueeze(0).to("cuda") pixel_values = pixel_values.unsqueeze(0).to("cuda") # Normalize the image pixel_values = pixel_values / 255.0 pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) pixel_values = pixel_values.to(torch.bfloat16) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=True, suppress_tokens=None, use_cache=True, temperature=temperature, top_k=None, top_p=top_p, streamer=streamer, ) if temperature == 0: generate_kwargs["do_sample"] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface', type="messages") textbox = gr.MultimodalTextbox(file_types=["image"], file_count="single") with gr.Blocks() as demo: gr.HTML(TITLE) chat_interface = gr.ChatInterface( fn=chat_joycaption, chatbot=chatbot, type="messages", fill_height=True, multimodal=True, textbox=textbox, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.6, label="Temperature", render=False), gr.Slider(minimum=0, maximum=1, step=0.05, value=0.9, label="Top p", render=False), gr.Slider(minimum=8, maximum=4096, step=1, value=1024, label="Max new tokens", render=False ), gr.Checkbox(label="Help improve JoyCaption by logging your text query", value=True, render=False), ], ) gr.Markdown(DESCRIPTION) if __name__ == "__main__": demo.launch()