Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from torch import nn | |
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM | |
from pathlib import Path | |
import torch | |
import torch.amp.autocast_mode | |
from PIL import Image | |
import os | |
CLIP_PATH = "google/siglip-so400m-patch14-384" | |
VLM_PROMPT = "A descriptive caption for this image" | |
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B" | |
CHECKPOINT_PATH = Path("wpkklhc6") | |
TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>" | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
class ImageAdapter(nn.Module): | |
def __init__(self, input_features: int, output_features: int): | |
super().__init__() | |
self.linear1 = nn.Linear(input_features, output_features) | |
self.activation = nn.GELU() | |
self.linear2 = nn.Linear(output_features, output_features) | |
def forward(self, vision_outputs: torch.Tensor): | |
x = self.linear1(vision_outputs) | |
x = self.activation(x) | |
x = self.linear2(x) | |
return x | |
# Load CLIP | |
print("Loading CLIP") | |
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) | |
clip_model = AutoModel.from_pretrained(CLIP_PATH) | |
clip_model = clip_model.vision_model | |
clip_model.eval() | |
clip_model.requires_grad_(False) | |
clip_model.to("cuda") | |
# Tokenizer | |
print("Loading tokenizer") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False) | |
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}" | |
# LLM | |
print("Loading LLM") | |
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16) | |
text_model.eval() | |
# Image Adapter | |
print("Loading image adapter") | |
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size) | |
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")) | |
image_adapter.eval() | |
image_adapter.to("cuda") | |
def stream_chat(input_image: Image.Image, vlm_prompt): | |
torch.cuda.empty_cache() | |
# Preprocess image | |
image = clip_processor(images=input_image, return_tensors='pt').pixel_values | |
image = image.to('cuda') | |
# Tokenize the prompt | |
if not vlm_prompt: | |
vlm_prompt = VLM_PROMPT | |
vlm_prompt = vlm_prompt + ":\n" | |
prompt = tokenizer.encode( | |
vlm_prompt, | |
return_tensors='pt', | |
padding=False, | |
truncation=False, | |
add_special_tokens=False | |
) | |
# Embed image | |
with torch.amp.autocast_mode.autocast('cuda', enabled=True): | |
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) | |
image_features = vision_outputs.hidden_states[-2] | |
embedded_images = image_adapter(image_features) | |
embedded_images = embedded_images.to('cuda') | |
# Embed prompt | |
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')) | |
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}" | |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)) | |
# Construct prompts | |
inputs_embeds = torch.cat([ | |
embedded_bos.expand(embedded_images.shape[0], -1, -1), | |
embedded_images.to(dtype=embedded_bos.dtype), | |
prompt_embeds.expand(embedded_images.shape[0], -1, -1), | |
], dim=1) | |
input_ids = torch.cat([ | |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), | |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), | |
prompt, | |
], dim=1).to('cuda') | |
attention_mask = torch.ones_like(input_ids) | |
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None) | |
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) | |
# Trim off the prompt | |
generate_ids = generate_ids[:, input_ids.shape[1]:] | |
if generate_ids[0][-1] == tokenizer.eos_token_id: | |
generate_ids = generate_ids[:, :-1] | |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] | |
return caption.strip() | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
run_button = gr.Button("Caption") | |
with gr.Column(): | |
output_caption = gr.Textbox(label="Caption") | |
with gr.Row(): | |
vlm_prompt = gr.Text( | |
label="VLM Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your VLM prompt", | |
container=False, | |
value="A descriptive caption for this image", | |
) | |
run_button.click(fn=stream_chat, inputs=[input_image, vlm_prompt], outputs=[output_caption]) | |
if __name__ == "__main__": | |
demo.launch() |