Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesadd vlm_prompt
app.py
CHANGED
@@ -11,7 +11,7 @@ import os
|
|
11 |
|
12 |
|
13 |
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
14 |
-
VLM_PROMPT = "A descriptive caption for this image
|
15 |
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
|
16 |
CHECKPOINT_PATH = Path("wpkklhc6")
|
17 |
TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>"
|
@@ -63,7 +63,7 @@ image_adapter.to("cuda")
|
|
63 |
|
64 |
@spaces.GPU()
|
65 |
@torch.no_grad()
|
66 |
-
def stream_chat(input_image: Image.Image):
|
67 |
torch.cuda.empty_cache()
|
68 |
|
69 |
# Preprocess image
|
@@ -71,7 +71,10 @@ def stream_chat(input_image: Image.Image):
|
|
71 |
image = image.to('cuda')
|
72 |
|
73 |
# Tokenize the prompt
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
# Embed image
|
77 |
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
|
@@ -121,8 +124,18 @@ with gr.Blocks() as demo:
|
|
121 |
|
122 |
with gr.Column():
|
123 |
output_caption = gr.Textbox(label="Caption")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption])
|
126 |
|
127 |
|
128 |
if __name__ == "__main__":
|
|
|
11 |
|
12 |
|
13 |
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
14 |
+
VLM_PROMPT = "A descriptive caption for this image:"
|
15 |
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
|
16 |
CHECKPOINT_PATH = Path("wpkklhc6")
|
17 |
TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>"
|
|
|
63 |
|
64 |
@spaces.GPU()
|
65 |
@torch.no_grad()
|
66 |
+
def stream_chat(input_image: Image.Image, vlm_prompt):
|
67 |
torch.cuda.empty_cache()
|
68 |
|
69 |
# Preprocess image
|
|
|
71 |
image = image.to('cuda')
|
72 |
|
73 |
# Tokenize the prompt
|
74 |
+
if not vlm_prompt:
|
75 |
+
vlm_prompt = VLM_PROMPT
|
76 |
+
vlm_prompt = vlm_prompt + "\n"
|
77 |
+
prompt = tokenizer.encode(vlm_prompt, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
|
78 |
|
79 |
# Embed image
|
80 |
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
|
|
|
124 |
|
125 |
with gr.Column():
|
126 |
output_caption = gr.Textbox(label="Caption")
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
vlm_prompt = gr.Text(
|
130 |
+
label="VLM Prompt",
|
131 |
+
show_label=False,
|
132 |
+
max_lines=1,
|
133 |
+
placeholder="Enter your VLM prompt",
|
134 |
+
container=False,
|
135 |
+
value="A descriptive caption for this image:",
|
136 |
+
)
|
137 |
|
138 |
+
run_button.click(fn=stream_chat, inputs=[input_image, vlm_prompt], outputs=[output_caption])
|
139 |
|
140 |
|
141 |
if __name__ == "__main__":
|