s1.1-32B / app.py
bobber's picture
Update app.py
bfea3d1 verified
raw
history blame
1.62 kB
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
#Qwen/Qwen2.5-14B-Instruct-1M
#Qwen/Qwen2-0.5B
# model_name = "bartowski/simplescaling_s1-32B-GGUF"
# subfolder = "Qwen-0.5B-GRPO/checkpoint-1868"
# filename = "simplescaling_s1-32B-Q4_K_S.gguf"
model_name = "simplescaling/s1.1-32B"
torch_dtype = torch.bfloat16 # could be torch.float16 or torch.bfloat16 torch.float32 too
model = AutoModelForCausalLM.from_pretrained(
model_name,
# subfolder=subfolder,
# gguf_file=filename,
torch_dtype=torch_dtype,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name
, gguf_file=filename
# , subfolder=subfolder
)
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
@spaces.GPU
def generate(prompt, history):
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
chat_interface = gr.ChatInterface(
fn=generate,
)
chat_interface.launch(share=True)