Add model selection
Browse files
app.py
CHANGED
@@ -9,7 +9,15 @@ API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "
|
|
9 |
#Testing with my Open AI Key
|
10 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
payload = {
|
15 |
"model": "gpt-3.5-turbo",
|
@@ -45,7 +53,7 @@ def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[]
|
|
45 |
messages.append(temp3)
|
46 |
#messages
|
47 |
payload = {
|
48 |
-
"model":
|
49 |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
|
50 |
"temperature" : temperature, #1.0,
|
51 |
"top_p": top_p, #1.0,
|
@@ -92,7 +100,7 @@ def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[]
|
|
92 |
def reset_textbox():
|
93 |
return gr.update(value='')
|
94 |
|
95 |
-
title = """<h1 align="center">
|
96 |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
|
97 |
```
|
98 |
User: <utterance>
|
@@ -109,6 +117,7 @@ with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin
|
|
109 |
gr.HTML(title)
|
110 |
with gr.Column(elem_id = "col_container"):
|
111 |
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here", value=OPENAI_API_KEY)
|
|
|
112 |
chatbot = gr.Chatbot(elem_id='chatbot') #c
|
113 |
inputs = gr.Textbox(placeholder= "Type here!", label= "Type an input and press Enter") #t
|
114 |
state = gr.State([]) #s
|
@@ -122,8 +131,8 @@ with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin
|
|
122 |
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
|
123 |
chat_counter = gr.Number(value=0, visible=False, precision=0)
|
124 |
|
125 |
-
inputs.submit( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
126 |
-
b1.click( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
127 |
b1.click(reset_textbox, [], [inputs])
|
128 |
inputs.submit(reset_textbox, [], [inputs])
|
129 |
|
|
|
9 |
#Testing with my Open AI Key
|
10 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
11 |
|
12 |
+
MODELS = [
|
13 |
+
'gpt-4o',
|
14 |
+
'gpt-4o-mini',
|
15 |
+
'gpt-4-turbo',
|
16 |
+
'gpt-4',
|
17 |
+
'gpt-3.5-turbo',
|
18 |
+
]
|
19 |
+
|
20 |
+
def predict(model_name, inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k
|
21 |
|
22 |
payload = {
|
23 |
"model": "gpt-3.5-turbo",
|
|
|
53 |
messages.append(temp3)
|
54 |
#messages
|
55 |
payload = {
|
56 |
+
"model": model_name,
|
57 |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
|
58 |
"temperature" : temperature, #1.0,
|
59 |
"top_p": top_p, #1.0,
|
|
|
100 |
def reset_textbox():
|
101 |
return gr.update(value='')
|
102 |
|
103 |
+
title = """<h1 align="center">GPT-4 via API</h1>"""
|
104 |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
|
105 |
```
|
106 |
User: <utterance>
|
|
|
117 |
gr.HTML(title)
|
118 |
with gr.Column(elem_id = "col_container"):
|
119 |
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here", value=OPENAI_API_KEY)
|
120 |
+
model_name = gr.Dropdown(choices=MODELS, value=MODELS[0], allow_custom_value=True)
|
121 |
chatbot = gr.Chatbot(elem_id='chatbot') #c
|
122 |
inputs = gr.Textbox(placeholder= "Type here!", label= "Type an input and press Enter") #t
|
123 |
state = gr.State([]) #s
|
|
|
131 |
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
|
132 |
chat_counter = gr.Number(value=0, visible=False, precision=0)
|
133 |
|
134 |
+
inputs.submit( predict, [model_name, inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
135 |
+
b1.click( predict, [model_name, inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
136 |
b1.click(reset_textbox, [], [inputs])
|
137 |
inputs.submit(reset_textbox, [], [inputs])
|
138 |
|