import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer import torch #Qwen/Qwen2.5-14B-Instruct-1M #Qwen/Qwen2-0.5B model_name = "bartowski/simplescaling_s1-32B-GGUF" subfolder = "Qwen-0.5B-GRPO/checkpoint-1868" filename = "simplescaling_s1-32B-Q6_K_L.gguf" torch_dtype = torch.float32 # could be torch.float16 or torch.bfloat16 too model = AutoModelForCausalLM.from_pretrained( model_name, # subfolder=subfolder, gguf_file=filename, torch_dtype=torch_dtype, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name , gguf_file=filename # , subfolder=subfolder ) SYSTEM_PROMPT = """ Respond in the following format: ... ... """ @spaces.GPU def generate(prompt, history): messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response chat_interface = gr.ChatInterface( fn=generate, ) chat_interface.launch(share=True)