bobber commited on
Commit
2275c1e
·
verified ·
1 Parent(s): 6dd269f

Update app.py

Browse files

from bobber/bigasp2 to John6666/biglove-ponyv20-sdxl

Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -11,8 +11,10 @@ dtype = torch.bfloat16
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
  #taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
13
  #good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
14
- good_vae = AutoencoderKL.from_pretrained("bobber/bigasp2", subfolder="vae", torch_dtype=dtype).to(device)
15
- pipeline = StableDiffusionXLPipeline.from_pretrained("bobber/bigasp2", torch_dtype=dtype, vae=good_vae).to(device)
 
 
16
 
17
  MAX_SEED = np.iinfo(np.int32).max
18
 
@@ -27,8 +29,8 @@ with gr.Blocks() as interface:
27
  with gr.Column():
28
  with gr.Row():
29
  with gr.Column():
30
- prompt = gr.Textbox(label="Prompt", info="What do you want?", value="score_6_up, a high-resolution photograph featuring a young woman with fair skin and long, straight brown hair, seated on a wooden bar stool in a rustic, warmly lit bar. She is completely nude, with red ribbon wrapped around her torso and thighs, accentuating her slender physique. Her breasts are medium-sized with pink nipples. The background is a wooden bar with various decorations. There are several framed pictures on the wooden walls, including a large, vintage-style poster of a woman with long hair. A string of multicolored triangular flags hangs across the top of the bar, adding a festive touch. To the right of the woman, there are two lit candles on a wooden plate, contributing to the warm ambiance. A small, heart-shaped mirror hangs above the bar, and a vintage-style glass bottle with a cork stopper is visible. The bar is cluttered with various items, including a cake with candles and a small bouquet of flowers, adding to the festive and cozy atmosphere.", lines=4, interactive=True)
31
- negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="score_1, score_2, score_3, multiple views, illustration", lines=4, interactive=True)
32
  with gr.Column():
33
  generate_button = gr.Button("Generate")
34
  output = gr.Image()
@@ -36,13 +38,13 @@ with gr.Blocks() as interface:
36
  with gr.Accordion(label="Advanced Settings", open=False):
37
  with gr.Row():
38
  with gr.Column():
39
- width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True)
40
- height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True)
41
  with gr.Column():
42
- sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=40, minimum=4, maximum=50, step=1, interactive=True)
43
  seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=163829704,)
44
  with gr.Column():
45
- guidance_scale = gr.Slider(label="Guidance Scale", info="Guidance scale.", value=8, minimum=1, maximum=10, step=0.1, interactive=True)
46
 
47
  generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps, guidance_scale, seed], outputs=[output])
48
 
 
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
  #taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
13
  #good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
14
+
15
+ # from bobber/bigasp2 to John6666/biglove-ponyv20-sdxl
16
+ good_vae = AutoencoderKL.from_pretrained("John6666/biglove-ponyv20-sdxl", subfolder="vae", torch_dtype=dtype).to(device)
17
+ pipeline = StableDiffusionXLPipeline.from_pretrained("John6666/biglove-ponyv20-sdxl", torch_dtype=dtype, vae=good_vae).to(device)
18
 
19
  MAX_SEED = np.iinfo(np.int32).max
20
 
 
29
  with gr.Column():
30
  with gr.Row():
31
  with gr.Column():
32
+ prompt = gr.Textbox(label="Prompt", info="What do you want?", value="selfie, holding phone, 18 years old, red and blonde hair, (tattoos), messy long hair, stockings, wet pussy, toned body, oni tattoo, spread pussy, basement bath room, vibrant colors, ", lines=4, interactive=True)
33
+ negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="monochrome", lines=4, interactive=True)
34
  with gr.Column():
35
  generate_button = gr.Button("Generate")
36
  output = gr.Image()
 
38
  with gr.Accordion(label="Advanced Settings", open=False):
39
  with gr.Row():
40
  with gr.Column():
41
+ width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=1248, minimum=128, maximum=4096, step=64, interactive=True)
42
+ height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=1824, minimum=128, maximum=4096, step=64, interactive=True)
43
  with gr.Column():
44
+ sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=8, minimum=4, maximum=50, step=1, interactive=True)
45
  seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=163829704,)
46
  with gr.Column():
47
+ guidance_scale = gr.Slider(label="Guidance Scale", info="Guidance scale.", value=2.5, minimum=1, maximum=10, step=0.1, interactive=True)
48
 
49
  generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps, guidance_scale, seed], outputs=[output])
50