Spaces:
Running
Running
Commit
·
5dc4444
1
Parent(s):
9d4bb84
stacked bar charts are also colored by map
Browse files- app/app.py +53 -4
- app/utils.py +167 -115
- app/variables.py +17 -17
app/app.py
CHANGED
@@ -169,6 +169,55 @@ chatbot_toggles = {key: False for key in [
|
|
169 |
'fire', 'rxburn', 'disadvantaged_communities',
|
170 |
'svi',
|
171 |
]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
#############
|
173 |
|
174 |
filters = {}
|
@@ -342,11 +391,11 @@ colors = (
|
|
342 |
# df - charts; df_tab - printed table (omits colors)
|
343 |
if 'out' not in locals():
|
344 |
df, df_tab, df_percent, df_bar_30x30 = summary_table(ca, column, select_colors, color_choice, filter_cols, filter_vals,colorby_vals)
|
345 |
-
total_percent = df_percent.percent_CA.sum()
|
346 |
|
347 |
else:
|
348 |
df = summary_table_sql(ca, column, colors, ids)
|
349 |
-
total_percent = df.percent_CA.sum()
|
350 |
|
351 |
|
352 |
# charts displayed based on color_by variable
|
@@ -374,12 +423,12 @@ with main:
|
|
374 |
with stats_col:
|
375 |
with st.container():
|
376 |
|
377 |
-
st.markdown(f"{total_percent}% CA
|
378 |
st.altair_chart(area_plot(df, column), use_container_width=True)
|
379 |
|
380 |
if 'df_bar_30x30' in locals(): #if we use chatbot, we won't have these graphs.
|
381 |
if column not in ["status", "gap_code"]:
|
382 |
-
st.altair_chart(stacked_bar(df_bar_30x30, column,'percent_group','status', color_choice + ' by 30x30 Status'), use_container_width=True)
|
383 |
|
384 |
if show_richness:
|
385 |
st.altair_chart(richness_chart, use_container_width=True)
|
|
|
169 |
'fire', 'rxburn', 'disadvantaged_communities',
|
170 |
'svi',
|
171 |
]}
|
172 |
+
|
173 |
+
def run_sql(query,color_choice):
|
174 |
+
"""
|
175 |
+
Filter data based on an LLM-generated SQL query and return matching IDs.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
query (str): The natural language query to filter the data.
|
179 |
+
color_choice (str): The column used for plotting.
|
180 |
+
"""
|
181 |
+
output = few_shot_structured_llm.invoke(query)
|
182 |
+
sql_query = output.sql_query
|
183 |
+
explanation =output.explanation
|
184 |
+
|
185 |
+
if not sql_query: # if the chatbot can't generate a SQL query.
|
186 |
+
st.success(explanation)
|
187 |
+
return pd.DataFrame({'id' : []})
|
188 |
+
|
189 |
+
result = ca.sql(sql_query).execute()
|
190 |
+
if result.empty :
|
191 |
+
explanation = "This query did not return any results. Please try again with a different query."
|
192 |
+
st.warning(explanation, icon="⚠️")
|
193 |
+
st.caption("SQL Query:")
|
194 |
+
st.code(sql_query,language = "sql")
|
195 |
+
if 'geom' in result.columns:
|
196 |
+
return result.drop('geom',axis = 1)
|
197 |
+
else:
|
198 |
+
return result
|
199 |
+
|
200 |
+
elif ("id" and "geom" in result.columns):
|
201 |
+
style = get_pmtiles_style_llm(style_options[color_choice], result["id"].tolist())
|
202 |
+
legend, position, bg_color, fontsize = getLegend(style_options,color_choice)
|
203 |
+
|
204 |
+
m.add_legend(legend_dict = legend, position = position, bg_color = bg_color, fontsize = fontsize)
|
205 |
+
m.add_pmtiles(ca_pmtiles, style=style, opacity=alpha, tooltip=True, fit_bounds=True)
|
206 |
+
m.fit_bounds(result.total_bounds.tolist())
|
207 |
+
result = result.drop('geom',axis = 1) #printing to streamlit so I need to drop geom
|
208 |
+
else:
|
209 |
+
st.write(result) # if we aren't mapping, just print out the data
|
210 |
+
|
211 |
+
with st.popover("Explanation"):
|
212 |
+
st.write(explanation)
|
213 |
+
st.caption("SQL Query:")
|
214 |
+
st.code(sql_query,language = "sql")
|
215 |
+
|
216 |
+
return result
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
#############
|
222 |
|
223 |
filters = {}
|
|
|
391 |
# df - charts; df_tab - printed table (omits colors)
|
392 |
if 'out' not in locals():
|
393 |
df, df_tab, df_percent, df_bar_30x30 = summary_table(ca, column, select_colors, color_choice, filter_cols, filter_vals,colorby_vals)
|
394 |
+
total_percent = 100*df_percent.percent_CA.sum()
|
395 |
|
396 |
else:
|
397 |
df = summary_table_sql(ca, column, colors, ids)
|
398 |
+
total_percent = 100*df.percent_CA.sum()
|
399 |
|
400 |
|
401 |
# charts displayed based on color_by variable
|
|
|
423 |
with stats_col:
|
424 |
with st.container():
|
425 |
|
426 |
+
st.markdown(f"{total_percent}% CA Protected", help = "Total percentage of 30x30 conserved lands, updates based on displayed data")
|
427 |
st.altair_chart(area_plot(df, column), use_container_width=True)
|
428 |
|
429 |
if 'df_bar_30x30' in locals(): #if we use chatbot, we won't have these graphs.
|
430 |
if column not in ["status", "gap_code"]:
|
431 |
+
st.altair_chart(stacked_bar(df_bar_30x30, column,'percent_group','status', color_choice + ' by 30x30 Status',colors), use_container_width=True)
|
432 |
|
433 |
if show_richness:
|
434 |
st.altair_chart(richness_chart, use_container_width=True)
|
app/utils.py
CHANGED
@@ -24,15 +24,19 @@ def colorTable(select_colors,color_choice,column):
|
|
24 |
.to_pandas()
|
25 |
)
|
26 |
return colors
|
27 |
-
|
|
|
|
|
|
|
28 |
def get_summary(ca, combined_filter, column, main_group, colors=None):
|
29 |
df = ca.filter(combined_filter)
|
30 |
#total acres for each group
|
|
|
31 |
group_totals = df.group_by(main_group).aggregate(total_acres=_.acres.sum())
|
32 |
df = ca.filter(combined_filter)
|
33 |
df = (df
|
34 |
.group_by(*column) # unpack the list for grouping
|
35 |
-
.aggregate(percent_CA=
|
36 |
acres = _.acres.sum(),
|
37 |
mean_richness = (_.richness * _.acres).sum() / _.acres.sum(),
|
38 |
mean_rsr = (_.rsr * _.acres).sum() / _.acres.sum(),
|
@@ -43,12 +47,12 @@ def get_summary(ca, combined_filter, column, main_group, colors=None):
|
|
43 |
mean_disadvantaged = (_.disadvantaged_communities * _.acres).sum() / _.acres.sum(),
|
44 |
mean_svi = (_.svi * _.acres).sum() / _.acres.sum(),
|
45 |
)
|
46 |
-
.mutate(percent_CA=_.percent_CA.round(
|
47 |
-
acres=_.acres.round(
|
48 |
)
|
49 |
-
|
50 |
df = df.inner_join(group_totals, main_group)
|
51 |
-
df = df.mutate(percent_group=(
|
52 |
if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it.
|
53 |
df = df.inner_join(colors, column[-1])
|
54 |
df = df.cast({col: "string" for col in column})
|
@@ -70,59 +74,92 @@ def summary_table(ca, column, select_colors, color_choice, filter_cols, filter_v
|
|
70 |
filters.append(getattr(_, column).isin(colorby_vals[column]))
|
71 |
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
|
72 |
|
73 |
-
|
|
|
|
|
74 |
df_tab = get_summary(ca, combined_filter, filter_cols, column, colors = None) #df used for printed table
|
75 |
-
|
76 |
-
|
|
|
|
|
77 |
df = get_summary(ca, combined_filter, [column], column, colors) # df used for charts
|
78 |
|
79 |
df_bar_30x30 = None # no stacked charts if we have status/gap_code
|
80 |
if column not in ["status","gap_code"]: # df for stacked 30x30 status bar chart
|
81 |
colors = colorTable(select_colors,"30x30 Status",'status')
|
82 |
-
|
83 |
-
|
|
|
84 |
return df, df_tab, df_percent, df_bar_30x30
|
85 |
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
def get_hex(df, color,sort_order):
|
89 |
return list(df.drop_duplicates(subset=color, keep="first")
|
90 |
.set_index(color)
|
91 |
.reindex(sort_order)
|
92 |
.dropna()["color"])
|
93 |
-
|
94 |
|
95 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
# bar order
|
97 |
-
if x == "established":
|
98 |
sort = '-x'
|
99 |
-
elif x == "access_type":
|
100 |
-
sort=['Open', 'Restricted', 'No Public', "Unknown"]
|
101 |
-
elif x == "
|
102 |
-
sort = [
|
103 |
-
elif x == "
|
104 |
-
sort = ["
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
'
|
111 |
-
|
|
|
|
|
|
|
|
|
112 |
sort = 'x'
|
113 |
|
114 |
-
|
115 |
-
if x == "manager_type": #labels are too long, making vertical
|
116 |
angle = 270
|
117 |
-
height =
|
118 |
-
|
|
|
119 |
angle = 270
|
120 |
height = 430
|
121 |
-
else:
|
122 |
angle = 0
|
123 |
height = 310
|
124 |
|
125 |
-
# stacked bar order
|
126 |
sort_order = ['30x30-conserved', 'other-conserved', 'unknown', 'non-conserved']
|
127 |
y_titles = {
|
128 |
'ecoregion': 'Ecoregion (%)',
|
@@ -131,12 +168,16 @@ def stacked_bar(df, x, y, color, title):
|
|
131 |
'easement': 'Easement (%)',
|
132 |
'access_type': 'Access (%)'
|
133 |
}
|
134 |
-
ytitle = y_titles.get(x, y)
|
135 |
color_hex = get_hex(df[[color, 'color']], color, sort_order)
|
136 |
-
sort_order = sort_order[0:len(color_hex)]
|
137 |
df["stack_order"] = df[color].apply(lambda val: sort_order.index(val) if val in sort_order else len(sort_order))
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
140 |
label_transform = (
|
141 |
"replace("
|
142 |
"replace("
|
@@ -150,40 +191,102 @@ def stacked_bar(df, x, y, color, title):
|
|
150 |
"'and', '&'),"
|
151 |
"'California', 'CA')"
|
152 |
)
|
153 |
-
else:
|
154 |
-
label_transform = f"datum.{x}" # Default label transformation
|
155 |
|
156 |
-
|
157 |
-
|
|
|
|
|
158 |
).encode(
|
159 |
-
x=alt.X("
|
160 |
-
|
|
|
161 |
color=alt.Color(
|
162 |
color,
|
163 |
-
sort=sort_order,
|
164 |
scale=alt.Scale(domain=sort_order, range=color_hex)
|
165 |
),
|
166 |
-
order=alt.Order(
|
167 |
-
"stack_order:Q",
|
168 |
-
sort="ascending"
|
169 |
-
),
|
170 |
tooltip=[
|
171 |
-
alt.Tooltip(
|
172 |
-
alt.Tooltip(
|
173 |
-
alt.Tooltip("percent_group", type="quantitative", format=",.
|
174 |
alt.Tooltip("acres", type="quantitative", format=",.0f"),
|
175 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
).configure_legend(
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
187 |
|
188 |
def area_plot(df, column): # Percent protected pie chart
|
189 |
base = alt.Chart(df).encode(
|
@@ -196,7 +299,7 @@ def area_plot(df, column): # Percent protected pie chart
|
|
196 |
alt.Color("color:N").scale(None).legend(None),
|
197 |
tooltip=[
|
198 |
alt.Tooltip(column, type="nominal"),
|
199 |
-
alt.Tooltip("percent_CA", type="quantitative", format=",.
|
200 |
alt.Tooltip("acres", type="quantitative", format=",.0f"),
|
201 |
]
|
202 |
)
|
@@ -230,6 +333,8 @@ def bar_chart(df, x, y, title): #display summary stats for color_by column
|
|
230 |
sort = '-x'
|
231 |
elif x == "access_type": #order based on levels of openness
|
232 |
sort=['Open', 'Restricted', 'No Public', "Unknown"]
|
|
|
|
|
233 |
elif x == "manager_type":
|
234 |
sort = ["Federal","Tribal","State","Special District", "County", "City", "HOA","Joint","Non Profit","Private","Unknown"]
|
235 |
elif x == "ecoregion":
|
@@ -422,56 +527,3 @@ def get_pmtiles_style_llm(paint, ids):
|
|
422 |
}
|
423 |
return style
|
424 |
|
425 |
-
def run_sql(query,color_choice):
|
426 |
-
"""
|
427 |
-
Filter data based on an LLM-generated SQL query and return matching IDs.
|
428 |
-
|
429 |
-
Args:
|
430 |
-
query (str): The natural language query to filter the data.
|
431 |
-
color_choice (str): The column used for plotting.
|
432 |
-
"""
|
433 |
-
output = few_shot_structured_llm.invoke(query)
|
434 |
-
sql_query = output.sql_query
|
435 |
-
explanation =output.explanation
|
436 |
-
|
437 |
-
if not sql_query: # if the chatbot can't generate a SQL query.
|
438 |
-
st.success(explanation)
|
439 |
-
return pd.DataFrame({'id' : []})
|
440 |
-
|
441 |
-
result = ca.sql(sql_query).execute()
|
442 |
-
if result.empty :
|
443 |
-
explanation = "This query did not return any results. Please try again with a different query."
|
444 |
-
st.warning(explanation, icon="⚠️")
|
445 |
-
st.caption("SQL Query:")
|
446 |
-
st.code(sql_query,language = "sql")
|
447 |
-
if 'geom' in result.columns:
|
448 |
-
return result.drop('geom',axis = 1)
|
449 |
-
else:
|
450 |
-
return result
|
451 |
-
|
452 |
-
elif ("id" and "geom" in result.columns):
|
453 |
-
style = get_pmtiles_style_llm(style_options[color_choice], result["id"].tolist())
|
454 |
-
legend, position, bg_color, fontsize = getLegend(style_options,color_choice)
|
455 |
-
|
456 |
-
m.add_legend(legend_dict = legend, position = position, bg_color = bg_color, fontsize = fontsize)
|
457 |
-
m.add_pmtiles(ca_pmtiles, style=style, opacity=alpha, tooltip=True, fit_bounds=True)
|
458 |
-
m.fit_bounds(result.total_bounds.tolist())
|
459 |
-
result = result.drop('geom',axis = 1) #printing to streamlit so I need to drop geom
|
460 |
-
else:
|
461 |
-
st.write(result) # if we aren't mapping, just print out the data
|
462 |
-
|
463 |
-
with st.popover("Explanation"):
|
464 |
-
st.write(explanation)
|
465 |
-
st.caption("SQL Query:")
|
466 |
-
st.code(sql_query,language = "sql")
|
467 |
-
|
468 |
-
return result
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
def summary_table_sql(ca, column, colors, ids): # get df for charts + df_tab for printed table
|
473 |
-
filters = [_.id.isin(ids)]
|
474 |
-
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
|
475 |
-
df = get_summary(ca, combined_filter, [column], colors) # df used for charts
|
476 |
-
return df
|
477 |
-
|
|
|
24 |
.to_pandas()
|
25 |
)
|
26 |
return colors
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
def get_summary(ca, combined_filter, column, main_group, colors=None):
|
32 |
df = ca.filter(combined_filter)
|
33 |
#total acres for each group
|
34 |
+
# if colors is not None and not colors.empty:
|
35 |
group_totals = df.group_by(main_group).aggregate(total_acres=_.acres.sum())
|
36 |
df = ca.filter(combined_filter)
|
37 |
df = (df
|
38 |
.group_by(*column) # unpack the list for grouping
|
39 |
+
.aggregate(percent_CA= _.acres.sum() / ca_area_acres,
|
40 |
acres = _.acres.sum(),
|
41 |
mean_richness = (_.richness * _.acres).sum() / _.acres.sum(),
|
42 |
mean_rsr = (_.rsr * _.acres).sum() / _.acres.sum(),
|
|
|
47 |
mean_disadvantaged = (_.disadvantaged_communities * _.acres).sum() / _.acres.sum(),
|
48 |
mean_svi = (_.svi * _.acres).sum() / _.acres.sum(),
|
49 |
)
|
50 |
+
.mutate(percent_CA=_.percent_CA.round(3),
|
51 |
+
acres=_.acres.round(0))
|
52 |
)
|
53 |
+
# if colors is not None and not colors.empty:
|
54 |
df = df.inner_join(group_totals, main_group)
|
55 |
+
df = df.mutate(percent_group=( _.acres / _.total_acres).round(3))
|
56 |
if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it.
|
57 |
df = df.inner_join(colors, column[-1])
|
58 |
df = df.cast({col: "string" for col in column})
|
|
|
74 |
filters.append(getattr(_, column).isin(colorby_vals[column]))
|
75 |
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
|
76 |
|
77 |
+
only_conserved = (combined_filter) & (_.status.isin(['30x30-conserved']))
|
78 |
+
df_percent = get_summary(ca, only_conserved, [column],column, colors) # df used for percentage, excludes non-conserved.
|
79 |
+
|
80 |
df_tab = get_summary(ca, combined_filter, filter_cols, column, colors = None) #df used for printed table
|
81 |
+
|
82 |
+
if "non-conserved" in list(chain.from_iterable(filter_vals)):
|
83 |
+
combined_filter = (combined_filter) | (_.status.isin(['non-conserved']))
|
84 |
+
|
85 |
df = get_summary(ca, combined_filter, [column], column, colors) # df used for charts
|
86 |
|
87 |
df_bar_30x30 = None # no stacked charts if we have status/gap_code
|
88 |
if column not in ["status","gap_code"]: # df for stacked 30x30 status bar chart
|
89 |
colors = colorTable(select_colors,"30x30 Status",'status')
|
90 |
+
df_bar_30x30 = get_summary(ca, combined_filter, [column, 'status'], column, colors) # df used for charts
|
91 |
+
|
92 |
+
|
93 |
return df, df_tab, df_percent, df_bar_30x30
|
94 |
|
95 |
|
96 |
|
97 |
+
|
98 |
+
def summary_table_sql(ca, column, colors, ids): # get df for charts + df_tab for printed table
|
99 |
+
filters = [_.id.isin(ids)]
|
100 |
+
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
|
101 |
+
df = get_summary(ca, combined_filter, [column], column, colors) # df used for charts
|
102 |
+
return df
|
103 |
+
|
104 |
+
|
105 |
def get_hex(df, color,sort_order):
|
106 |
return list(df.drop_duplicates(subset=color, keep="first")
|
107 |
.set_index(color)
|
108 |
.reindex(sort_order)
|
109 |
.dropna()["color"])
|
|
|
110 |
|
111 |
+
def transform_label(label, x_field):
|
112 |
+
# converting labels for that gnarly stacked bar chart
|
113 |
+
if x_field == "access_type":
|
114 |
+
return label.replace(" Access", "")
|
115 |
+
elif x_field == "ecoregion":
|
116 |
+
label = label.replace("Northern California", "NorCal")
|
117 |
+
label = label.replace("Southern California", "SoCal")
|
118 |
+
label = label.replace("Southeastern", "SE.")
|
119 |
+
label = label.replace("Northwestern", "NW.")
|
120 |
+
label = label.replace("and", "&")
|
121 |
+
label = label.replace("California", "CA")
|
122 |
+
return label
|
123 |
+
else:
|
124 |
+
return label
|
125 |
+
|
126 |
+
|
127 |
+
def stacked_bar(df, x, y, color, title, colors):
|
128 |
+
label_colors = colors['color'].to_list()
|
129 |
# bar order
|
130 |
+
if x == "established": # order labels in chronological order, not alphabetic.
|
131 |
sort = '-x'
|
132 |
+
elif x == "access_type": # order based on levels of openness
|
133 |
+
sort = ['Open', 'Restricted', 'No Public', "Unknown"]
|
134 |
+
elif x == "easement":
|
135 |
+
sort = ['True', 'False']
|
136 |
+
elif x == "manager_type":
|
137 |
+
sort = ["Federal", "Tribal", "State", "Special District", "County", "City", "HOA",
|
138 |
+
"Joint", "Non Profit", "Private", "Unknown"]
|
139 |
+
elif x == "status":
|
140 |
+
sort = ["30x30-conserved", "other-conserved", "unknown", "non-conserved"]
|
141 |
+
elif x == "ecoregion":
|
142 |
+
sort = ['SE. Great Basin', 'Mojave Desert', 'Sonoran Desert', 'Sierra Nevada',
|
143 |
+
'SoCal Mountains & Valleys', 'Mono', 'Central CA Coast', 'Klamath Mountains',
|
144 |
+
'NorCal Coast', 'NorCal Coast Ranges', 'NW. Basin & Range', 'Colorado Desert',
|
145 |
+
'Central Valley Coast Ranges', 'SoCal Coast', 'Sierra Nevada Foothills',
|
146 |
+
'Southern Cascades', 'Modoc Plateau', 'Great Valley (North)',
|
147 |
+
'NorCal Interior Coast Ranges', 'Great Valley (South)']
|
148 |
+
else:
|
149 |
sort = 'x'
|
150 |
|
151 |
+
if x == "manager_type":
|
|
|
152 |
angle = 270
|
153 |
+
height = 350
|
154 |
+
|
155 |
+
elif x == 'ecoregion':
|
156 |
angle = 270
|
157 |
height = 430
|
158 |
+
else:
|
159 |
angle = 0
|
160 |
height = 310
|
161 |
|
162 |
+
# stacked bar order
|
163 |
sort_order = ['30x30-conserved', 'other-conserved', 'unknown', 'non-conserved']
|
164 |
y_titles = {
|
165 |
'ecoregion': 'Ecoregion (%)',
|
|
|
168 |
'easement': 'Easement (%)',
|
169 |
'access_type': 'Access (%)'
|
170 |
}
|
171 |
+
ytitle = y_titles.get(x, y)
|
172 |
color_hex = get_hex(df[[color, 'color']], color, sort_order)
|
173 |
+
sort_order = sort_order[0:len(color_hex)]
|
174 |
df["stack_order"] = df[color].apply(lambda val: sort_order.index(val) if val in sort_order else len(sort_order))
|
175 |
+
|
176 |
+
# shorten labels to fit on chart
|
177 |
+
label_transform = f"datum.{x}"
|
178 |
+
if x == "access_type":
|
179 |
+
label_transform = f"replace(datum.{x}, ' Access', '')"
|
180 |
+
elif x == "ecoregion":
|
181 |
label_transform = (
|
182 |
"replace("
|
183 |
"replace("
|
|
|
191 |
"'and', '&'),"
|
192 |
"'California', 'CA')"
|
193 |
)
|
|
|
|
|
194 |
|
195 |
+
# to match the colors in the map to each label, need to write some ugly code..
|
196 |
+
# bar chart w/ xlabels hidden
|
197 |
+
chart = alt.Chart(df).mark_bar(height = 500).transform_calculate(
|
198 |
+
xlabel=label_transform
|
199 |
).encode(
|
200 |
+
x=alt.X("xlabel:N", sort=sort, title=None,
|
201 |
+
axis=alt.Axis(labelLimit=150, labelAngle=angle, labelColor="transparent")),
|
202 |
+
y=alt.Y(y, title=ytitle, axis=alt.Axis(labelPadding=5)).scale(domain=(0, 1)),
|
203 |
color=alt.Color(
|
204 |
color,
|
205 |
+
sort=sort_order,
|
206 |
scale=alt.Scale(domain=sort_order, range=color_hex)
|
207 |
),
|
208 |
+
order=alt.Order("stack_order:Q", sort="ascending"),
|
|
|
|
|
|
|
209 |
tooltip=[
|
210 |
+
alt.Tooltip(x, type="nominal"),
|
211 |
+
alt.Tooltip(color, type="nominal"),
|
212 |
+
alt.Tooltip("percent_group", type="quantitative", format=",.1%"),
|
213 |
alt.Tooltip("acres", type="quantitative", format=",.0f"),
|
214 |
]
|
215 |
+
)
|
216 |
+
transformed_labels = [transform_label(str(lab), x) for lab in colors[x]]
|
217 |
+
labels_df = colors
|
218 |
+
labels_df['xlabel'] = transformed_labels
|
219 |
+
# 2 layers, 1 for the symbol and 1 for the text
|
220 |
+
if angle == 0:
|
221 |
+
symbol_layer = alt.Chart(labels_df).mark_point(
|
222 |
+
filled=True,
|
223 |
+
shape="circle",
|
224 |
+
size=100,
|
225 |
+
xOffset = 0,
|
226 |
+
yOffset=130,
|
227 |
+
align = 'left',
|
228 |
+
tooltip = False
|
229 |
+
).encode(
|
230 |
+
x=alt.X("xlabel:N", sort=sort),
|
231 |
+
color=alt.Color("color:N", scale=None)
|
232 |
+
)
|
233 |
+
text_layer = alt.Chart(labels_df).mark_text(
|
234 |
+
dy=115, # shifts the text to the right of the symbol
|
235 |
+
dx = 0,
|
236 |
+
yOffset=0,
|
237 |
+
xOffset = 0,
|
238 |
+
align='center',
|
239 |
+
color="black",
|
240 |
+
tooltip = False
|
241 |
+
).encode(
|
242 |
+
x=alt.X("xlabel:N", sort=sort),
|
243 |
+
text=alt.Text("xlabel:N")
|
244 |
+
)
|
245 |
+
# vertical labels
|
246 |
+
elif angle == 270:
|
247 |
+
symbol_layer = alt.Chart(labels_df).mark_point(
|
248 |
+
xOffset = 0,
|
249 |
+
yOffset= 100,
|
250 |
+
filled=True,
|
251 |
+
shape="circle",
|
252 |
+
size=100,
|
253 |
+
tooltip = False
|
254 |
+
).encode(
|
255 |
+
x=alt.X("xlabel:N", sort=sort),
|
256 |
+
color=alt.Color("color:N", scale=None)
|
257 |
+
)
|
258 |
+
text_layer = alt.Chart(labels_df).mark_text(
|
259 |
+
dy=0,
|
260 |
+
dx = -110,
|
261 |
+
angle=270,
|
262 |
+
align='right',
|
263 |
+
color="black",
|
264 |
+
tooltip = False
|
265 |
+
).encode(
|
266 |
+
x=alt.X("xlabel:N", sort=sort),
|
267 |
+
text=alt.Text("xlabel:N")
|
268 |
+
)
|
269 |
+
|
270 |
+
custom_labels = alt.layer(symbol_layer, text_layer)
|
271 |
+
final_chart = alt.layer(chart, custom_labels)
|
272 |
+
|
273 |
+
# put it all together
|
274 |
+
final_chart = final_chart.properties(
|
275 |
+
width="container",
|
276 |
+
height=height,
|
277 |
+
title=title
|
278 |
).configure_legend(
|
279 |
+
direction='horizontal',
|
280 |
+
orient='top',
|
281 |
+
columns=3,
|
282 |
+
title=None,
|
283 |
+
labelOffset=2,
|
284 |
+
offset=10,
|
285 |
+
symbolType = 'square'
|
286 |
+
).configure_title(
|
287 |
+
fontSize=18, align="center", anchor='middle', offset=10
|
288 |
+
)
|
289 |
+
return final_chart
|
290 |
|
291 |
def area_plot(df, column): # Percent protected pie chart
|
292 |
base = alt.Chart(df).encode(
|
|
|
299 |
alt.Color("color:N").scale(None).legend(None),
|
300 |
tooltip=[
|
301 |
alt.Tooltip(column, type="nominal"),
|
302 |
+
alt.Tooltip("percent_CA", type="quantitative", format=",.1%"),
|
303 |
alt.Tooltip("acres", type="quantitative", format=",.0f"),
|
304 |
]
|
305 |
)
|
|
|
333 |
sort = '-x'
|
334 |
elif x == "access_type": #order based on levels of openness
|
335 |
sort=['Open', 'Restricted', 'No Public', "Unknown"]
|
336 |
+
elif x == "easement":
|
337 |
+
sort=['True','False']
|
338 |
elif x == "manager_type":
|
339 |
sort = ["Federal","Tribal","State","Special District", "County", "City", "HOA","Joint","Non Profit","Private","Unknown"]
|
340 |
elif x == "ecoregion":
|
|
|
527 |
}
|
528 |
return style
|
529 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/variables.py
CHANGED
@@ -40,11 +40,11 @@ white = "#FFFFFF"
|
|
40 |
# gap codes 3 and 4 are off by default.
|
41 |
default_boxes = {
|
42 |
0: False,
|
43 |
-
3: False,
|
44 |
-
4: False,
|
45 |
-
"other-conserved":False,
|
46 |
-
"unknown":False,
|
47 |
-
"non-conserved":False
|
48 |
}
|
49 |
|
50 |
# Maplibre styles. (should these be functions?)
|
@@ -130,26 +130,26 @@ ecoregion = {
|
|
130 |
'property': 'ecoregion',
|
131 |
'type': 'categorical',
|
132 |
'stops': [
|
133 |
-
['Sierra Nevada Foothills', "#1f77b4"],
|
134 |
-
['Southern Cascades', "#ff7f0e"],
|
135 |
['Southeastern Great Basin', "#2ca02c"],
|
136 |
-
['
|
137 |
['Sonoran Desert', "#9467bd"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
['Northwestern Basin and Range', "#8c564b"],
|
139 |
['Colorado Desert', "#e377c2"],
|
140 |
['Central Valley Coast Ranges', "#7f7f7f"],
|
141 |
-
['Great Valley (South)', "#bcbd22"],
|
142 |
-
['Sierra Nevada', "#17becf"],
|
143 |
-
['Northern California Coast Ranges', "#aec7e8"],
|
144 |
-
['Northern California Interior Coast Ranges', "#ffbb78"],
|
145 |
-
['Mojave Desert', "#98df8a"],
|
146 |
-
['Mono', "#ff9896"],
|
147 |
['Southern California Coast', "#c5b0d5"],
|
|
|
|
|
148 |
['Modoc Plateau', "#c49c94"],
|
149 |
-
['
|
150 |
-
['Northern California Coast', "#
|
151 |
['Great Valley (North)', "#dbdb8d"],
|
152 |
-
['Central California Coast', "#9edae5"],
|
153 |
],
|
154 |
'default': white
|
155 |
}
|
|
|
40 |
# gap codes 3 and 4 are off by default.
|
41 |
default_boxes = {
|
42 |
0: False,
|
43 |
+
# 3: False,
|
44 |
+
# 4: False,
|
45 |
+
# "other-conserved":False,
|
46 |
+
# "unknown":False,
|
47 |
+
# "non-conserved":False
|
48 |
}
|
49 |
|
50 |
# Maplibre styles. (should these be functions?)
|
|
|
130 |
'property': 'ecoregion',
|
131 |
'type': 'categorical',
|
132 |
'stops': [
|
|
|
|
|
133 |
['Southeastern Great Basin', "#2ca02c"],
|
134 |
+
['Mojave Desert', "#98df8a"],
|
135 |
['Sonoran Desert', "#9467bd"],
|
136 |
+
['Sierra Nevada', "#17becf"],
|
137 |
+
['Southern California Mountains and Valleys', "#d62728"],
|
138 |
+
['Mono', "#ff9896"],
|
139 |
+
['Central California Coast', "#9edae5"],
|
140 |
+
['Klamath Mountains', "#f7b6d2"],
|
141 |
+
['Northern California Coast', "#c7c7c7"],
|
142 |
+
['Northern California Coast Ranges', "#aec7e8"],
|
143 |
['Northwestern Basin and Range', "#8c564b"],
|
144 |
['Colorado Desert', "#e377c2"],
|
145 |
['Central Valley Coast Ranges', "#7f7f7f"],
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
['Southern California Coast', "#c5b0d5"],
|
147 |
+
['Sierra Nevada Foothills', "#1f77b4"],
|
148 |
+
['Southern Cascades', "#ff7f0e"],
|
149 |
['Modoc Plateau', "#c49c94"],
|
150 |
+
['Great Valley (South)', "#bcbd22"],
|
151 |
+
['Northern California Interior Coast Ranges', "#ffbb78"],
|
152 |
['Great Valley (North)', "#dbdb8d"],
|
|
|
153 |
],
|
154 |
'default': white
|
155 |
}
|