Spaces:
Running
Running
refactor app.py into sections
Browse files- app/app.py +20 -596
- app/footer.md +22 -0
- app/system_prompt.txt +140 -0
- app/utils.py +271 -0
- app/variables.py +154 -0
app/app.py
CHANGED
@@ -13,75 +13,30 @@ from shapely import wkb
|
|
13 |
import sqlalchemy
|
14 |
import pathlib
|
15 |
from typing import Optional
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
ca_parquet = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cpad-stats.parquet"
|
20 |
-
#ca_parquet = "cpad-stats.parquet" #local copy is faster
|
21 |
-
|
22 |
-
ca_area_acres = 1.014e8 #acres
|
23 |
-
style_choice = "GAP Status Code"
|
24 |
-
|
25 |
-
|
26 |
|
27 |
|
28 |
-
## Create the engine
|
29 |
-
cwd = pathlib.Path.cwd()
|
30 |
-
connect_args = {'preload_extensions':['spatial']}
|
31 |
-
eng = sqlalchemy.create_engine(f"duckdb:///{cwd}/duck.db",connect_args = connect_args)
|
32 |
|
33 |
# Create the duckdb connection directly from the sqlalchemy engine instead.
|
34 |
-
# Not as elegant as `ibis.duckdb.connect()` but shares connection with
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
37 |
## Create the table from remote parquet only if it doesn't already exist on disk
|
|
|
|
|
38 |
current_tables = con.list_tables()
|
39 |
if "mydata" not in set(current_tables):
|
40 |
tbl = con.read_parquet(ca_parquet)
|
41 |
con.create_table("mydata", tbl)
|
42 |
-
|
43 |
ca = con.table("mydata")
|
44 |
|
45 |
-
# urls for additional data layers
|
46 |
-
url_sr = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/species-richness-ca/{z}/{x}/{y}.png"
|
47 |
-
url_rsr = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/range-size-rarity/{z}/{x}/{y}.png"
|
48 |
-
url_irr_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_irrecoverable_c_2018_cog.tif"
|
49 |
-
url_man_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_manageable_c_2018_cog.tif"
|
50 |
-
url_svi = "https://data.source.coop/cboettig/social-vulnerability/svi2020_us_county.pmtiles"
|
51 |
-
url_justice40 = "https://data.source.coop/cboettig/justice40/disadvantaged-communities.pmtiles"
|
52 |
-
url_loss_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/deforest-carbon-ca/{z}/{x}/{y}.png"
|
53 |
-
url_hi = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_human_impact_cog.tif"
|
54 |
-
url_calfire = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cal_fire_2022.pmtiles"
|
55 |
-
url_rxburn = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cal_rxburn_2022.pmtiles"
|
56 |
-
|
57 |
-
# colors for plotting
|
58 |
-
private_access_color = "#DE881E" # orange
|
59 |
-
public_access_color = "#3388ff" # blue
|
60 |
-
tribal_color = "#BF40BF" # purple
|
61 |
-
mixed_color = "#005a00" # green
|
62 |
-
year2023_color = "#26542C" # green
|
63 |
-
year2024_color = "#F3AB3D" # orange
|
64 |
-
federal_color = "#529642" # green
|
65 |
-
state_color = "#A1B03D" # light green
|
66 |
-
local_color = "#365591" # blue
|
67 |
-
special_color = "#0096FF" # blue
|
68 |
-
private_color = "#7A3F1A" # brown
|
69 |
-
joint_color = "#DAB0AE" # light pink
|
70 |
-
county_color = "#DE3163" # magenta
|
71 |
-
city_color = "#ADD8E6" #light blue
|
72 |
-
hoa_color = "#A89BBC" # purple
|
73 |
-
nonprofit_color = "#D77031" #orange
|
74 |
-
justice40_color = "#00008B" #purple
|
75 |
-
svi_color = "#1bc7c3" #cyan
|
76 |
-
white = "#FFFFFF"
|
77 |
-
|
78 |
-
|
79 |
-
# gap codes 3 and 4 are off by default.
|
80 |
-
default_gap = {
|
81 |
-
3: False,
|
82 |
-
4: False,
|
83 |
-
}
|
84 |
-
|
85 |
|
86 |
for key in [
|
87 |
'richness', 'rsr', 'irrecoverable_carbon', 'manageable_carbon',
|
@@ -92,332 +47,7 @@ for key in [
|
|
92 |
]:
|
93 |
if key not in st.session_state:
|
94 |
st.session_state[key] = False
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
from functools import reduce
|
99 |
-
|
100 |
-
def get_summary(ca, combined_filter, column, colors=None): #summary stats, based on filtered data
|
101 |
-
df = ca.filter(combined_filter)
|
102 |
-
df = (df
|
103 |
-
.group_by(*column) # unpack the list for grouping
|
104 |
-
.aggregate(percent_protected=100 * _.acres.sum() / ca_area_acres,
|
105 |
-
mean_richness = (_.richness * _.acres).sum() / _.acres.sum(),
|
106 |
-
mean_rsr = (_.rsr * _.acres).sum() / _.acres.sum(),
|
107 |
-
mean_irrecoverable_carbon = (_.irrecoverable_carbon * _.acres).sum() / _.acres.sum(),
|
108 |
-
mean_manageable_carbon = (_.manageable_carbon * _.acres).sum() / _.acres.sum(),
|
109 |
-
mean_percent_fire_10yr = (_.percent_fire_10yr *_.acres).sum()/_.acres.sum(),
|
110 |
-
mean_percent_rxburn_10yr = (_.percent_rxburn_10yr *_.acres).sum()/_.acres.sum(),
|
111 |
-
mean_percent_disadvantaged = (_.percent_disadvantaged * _.acres).sum() / _.acres.sum(),
|
112 |
-
mean_svi = (_.svi * _.acres).sum() / _.acres.sum(),
|
113 |
-
mean_svi_socioeconomic_status = (_.svi_socioeconomic_status * _.acres).sum() / _.acres.sum(),
|
114 |
-
mean_svi_household_char = (_.svi_household_char * _.acres).sum() / _.acres.sum(),
|
115 |
-
mean_svi_racial_ethnic_minority = (_.svi_racial_ethnic_minority * _.acres).sum() / _.acres.sum(),
|
116 |
-
mean_svi_housing_transit = (_.svi_housing_transit * _.acres).sum() / _.acres.sum(),
|
117 |
-
mean_carbon_lost = (_.deforest_carbon * _.acres).sum() / _.acres.sum(),
|
118 |
-
mean_human_impact = (_.human_impact * _.acres).sum() / _.acres.sum(),
|
119 |
-
)
|
120 |
-
.mutate(percent_protected=_.percent_protected.round(1))
|
121 |
-
)
|
122 |
-
if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it.
|
123 |
-
df = df.inner_join(colors, column)
|
124 |
-
df = df.cast({col: "string" for col in column})
|
125 |
-
df = df.to_pandas()
|
126 |
-
return df
|
127 |
-
|
128 |
-
|
129 |
-
def summary_table(column, colors, filter_cols, filter_vals,colorby_vals): # get df for charts + df_tab for printed table
|
130 |
-
filters = []
|
131 |
-
if filter_cols and filter_vals: #if a filter is selected, add to list of filters
|
132 |
-
for filter_col, filter_val in zip(filter_cols, filter_vals):
|
133 |
-
if len(filter_val) > 1:
|
134 |
-
filters.append(getattr(_, filter_col).isin(filter_val))
|
135 |
-
else:
|
136 |
-
filters.append(getattr(_, filter_col) == filter_val[0])
|
137 |
-
if column not in filter_cols: #show color_by column in table by adding it as a filter (if it's not already a filter)
|
138 |
-
filter_cols.append(column)
|
139 |
-
filters.append(getattr(_, column).isin(colorby_vals[column]))
|
140 |
-
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
|
141 |
-
df = get_summary(ca, combined_filter, [column], colors) # df used for charts
|
142 |
-
df_tab = get_summary(ca, combined_filter, filter_cols, colors = None) #df used for printed table
|
143 |
-
return df, df_tab
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
def area_plot(df, column): #percent protected pie chart
|
148 |
-
base = alt.Chart(df).encode(
|
149 |
-
alt.Theta("percent_protected:Q").stack(True),
|
150 |
-
)
|
151 |
-
pie = ( base
|
152 |
-
.mark_arc(innerRadius= 40, outerRadius=100)
|
153 |
-
.encode(alt.Color("color:N").scale(None).legend(None),
|
154 |
-
tooltip=['percent_protected', column])
|
155 |
-
)
|
156 |
-
text = ( base
|
157 |
-
.mark_text(radius=80, size=14, color="white")
|
158 |
-
.encode(text = column + ":N")
|
159 |
-
)
|
160 |
-
plot = pie # pie + text
|
161 |
-
return plot.properties(width="container", height=290)
|
162 |
-
|
163 |
-
|
164 |
-
def bar_chart(df, x, y, title): #display summary stats for color_by column
|
165 |
-
|
166 |
-
#axis label angles / chart size
|
167 |
-
if x == "manager_type": #labels are too long, making vertical
|
168 |
-
angle = 270
|
169 |
-
height = 373
|
170 |
-
else: #other labels are horizontal
|
171 |
-
angle = 0
|
172 |
-
height = 310
|
173 |
-
|
174 |
-
# order of bars
|
175 |
-
if x == "established": # order labels in chronological order, not alphabetic.
|
176 |
-
sort = '-x'
|
177 |
-
elif x == "access_type": #order based on levels of openness
|
178 |
-
sort=['Open', 'Restricted', 'No Public', "Unknown"]
|
179 |
-
elif x == "manager_type":
|
180 |
-
sort = ["Federal","Tribal","State","Special District", "County", "City", "HOA","Joint","Non Profit","Private","Unknown"]
|
181 |
-
else:
|
182 |
-
sort = 'x'
|
183 |
-
|
184 |
-
x_title = next(key for key, value in select_column.items() if value == x)
|
185 |
-
chart = alt.Chart(df).mark_bar().transform_calculate(
|
186 |
-
access_label=f"replace(datum.{x}, ' Access', '')" #omit access from access_type labels so it fits in frame
|
187 |
-
).encode(
|
188 |
-
x=alt.X("access_label:N",
|
189 |
-
axis=alt.Axis(labelAngle=angle, title=x_title),
|
190 |
-
sort=sort),
|
191 |
-
y=alt.Y(y, axis=alt.Axis()),
|
192 |
-
color=alt.Color('color').scale(None)
|
193 |
-
).properties(width="container", height=height, title = title
|
194 |
-
)
|
195 |
-
# sizing for poster
|
196 |
-
# ).configure_title(
|
197 |
-
# fontSize=40
|
198 |
-
# ).configure_axis(
|
199 |
-
# labelFontSize=24,
|
200 |
-
# titleFontSize=34
|
201 |
-
# )
|
202 |
-
return chart
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
def getButtons(style_options, style_choice, default_gap=None): #finding the buttons selected to use as filters
|
207 |
-
column = style_options[style_choice]['property']
|
208 |
-
opts = [style[0] for style in style_options[style_choice]['stops']]
|
209 |
-
default_gap = default_gap or {}
|
210 |
-
buttons = {
|
211 |
-
name: st.checkbox(f"{name}", value=default_gap.get(name, True), key=column + str(name))
|
212 |
-
for name in opts
|
213 |
-
}
|
214 |
-
filter_choice = [key for key, value in buttons.items() if value] # return only selected
|
215 |
-
d = {}
|
216 |
-
d[column] = filter_choice
|
217 |
-
return d
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
def getColorVals(style_options, style_choice):
|
222 |
-
#df_tab only includes filters selected, we need to manually add "color_by" column (if it's not already a filter).
|
223 |
-
column = style_options[style_choice]['property']
|
224 |
-
opts = [style[0] for style in style_options[style_choice]['stops']]
|
225 |
-
d = {}
|
226 |
-
d[column] = opts
|
227 |
-
return d
|
228 |
|
229 |
-
manager = {
|
230 |
-
'property': 'manager_type',
|
231 |
-
'type': 'categorical',
|
232 |
-
'stops': [
|
233 |
-
['Federal', federal_color],
|
234 |
-
['State', state_color],
|
235 |
-
['Non Profit', nonprofit_color],
|
236 |
-
['Special District', special_color],
|
237 |
-
['Unknown', "#bbbbbb"],
|
238 |
-
['County', county_color],
|
239 |
-
['City', city_color],
|
240 |
-
['Joint', joint_color],
|
241 |
-
['Tribal', tribal_color],
|
242 |
-
['Private', private_color],
|
243 |
-
['HOA', hoa_color]
|
244 |
-
]
|
245 |
-
}
|
246 |
-
|
247 |
-
easement = {
|
248 |
-
'property': 'easement',
|
249 |
-
'type': 'categorical',
|
250 |
-
'stops': [
|
251 |
-
['True', private_access_color],
|
252 |
-
['False', public_access_color]
|
253 |
-
]
|
254 |
-
}
|
255 |
-
|
256 |
-
year = {
|
257 |
-
'property': 'established',
|
258 |
-
'type': 'categorical',
|
259 |
-
'stops': [
|
260 |
-
['pre-2024', year2023_color],
|
261 |
-
['2024', year2024_color]
|
262 |
-
]
|
263 |
-
}
|
264 |
-
|
265 |
-
access = {
|
266 |
-
'property': 'access_type',
|
267 |
-
'type': 'categorical',
|
268 |
-
'stops': [
|
269 |
-
['Open Access', public_access_color],
|
270 |
-
['No Public Access', private_access_color],
|
271 |
-
['Unknown Access', "#bbbbbb"],
|
272 |
-
['Restricted Access', tribal_color]
|
273 |
-
]
|
274 |
-
}
|
275 |
-
|
276 |
-
gap = {
|
277 |
-
'property': 'reGAP',
|
278 |
-
'type': 'categorical',
|
279 |
-
'stops': [
|
280 |
-
[1, "#26633d"],
|
281 |
-
[2, "#879647"],
|
282 |
-
[3, "#EE4B2B"],
|
283 |
-
[4, "#BF40BF"]
|
284 |
-
]
|
285 |
-
}
|
286 |
-
|
287 |
-
style_options = {
|
288 |
-
"Year": year,
|
289 |
-
"GAP Status Code": gap,
|
290 |
-
"Manager Type": manager,
|
291 |
-
"Easement": easement,
|
292 |
-
"Access Type": access,
|
293 |
-
}
|
294 |
-
|
295 |
-
justice40_fill = {
|
296 |
-
'property': 'Disadvan',
|
297 |
-
'type': 'categorical',
|
298 |
-
'stops': [
|
299 |
-
[0, white],
|
300 |
-
[1, justice40_color]
|
301 |
-
]
|
302 |
-
}
|
303 |
-
|
304 |
-
justice40_style = {
|
305 |
-
"version": 8,
|
306 |
-
"sources": {
|
307 |
-
"source1": {
|
308 |
-
"type": "vector",
|
309 |
-
"url": "pmtiles://" + url_justice40,
|
310 |
-
"attribution": "Justice40"
|
311 |
-
}
|
312 |
-
},
|
313 |
-
"layers": [
|
314 |
-
{
|
315 |
-
"id": "layer1",
|
316 |
-
"source": "source1",
|
317 |
-
"source-layer": "DisadvantagedCommunitiesCEJST",
|
318 |
-
"filter": ["match", ["get", "StateName"], "California", True, False],
|
319 |
-
"type": "fill",
|
320 |
-
"paint": {
|
321 |
-
"fill-color": justice40_fill,
|
322 |
-
}
|
323 |
-
}
|
324 |
-
]
|
325 |
-
}
|
326 |
-
|
327 |
-
def fire_style(layer):
|
328 |
-
return {"version": 8,
|
329 |
-
"sources": {
|
330 |
-
"source1": {
|
331 |
-
"type": "vector",
|
332 |
-
"url": "pmtiles://" + url_calfire,
|
333 |
-
"attribution": "CAL FIRE"
|
334 |
-
}
|
335 |
-
},
|
336 |
-
"layers": [
|
337 |
-
{
|
338 |
-
"id": "fire",
|
339 |
-
"source": "source1",
|
340 |
-
"source-layer": layer,
|
341 |
-
"type": "fill",
|
342 |
-
"paint": {
|
343 |
-
"fill-color": "#D22B2B",
|
344 |
-
}
|
345 |
-
}
|
346 |
-
]
|
347 |
-
}
|
348 |
-
def rx_style(layer):
|
349 |
-
return{
|
350 |
-
"version": 8,
|
351 |
-
"sources": {
|
352 |
-
"source2": {
|
353 |
-
"type": "vector",
|
354 |
-
"url": "pmtiles://" + url_rxburn,
|
355 |
-
"attribution": "CAL FIRE"
|
356 |
-
}
|
357 |
-
},
|
358 |
-
"layers": [
|
359 |
-
{
|
360 |
-
"id": "fire",
|
361 |
-
"source": "source2",
|
362 |
-
"source-layer": layer,
|
363 |
-
# "filter": [">=", ["get", "YEAR_"], year],
|
364 |
-
"type": "fill",
|
365 |
-
"paint": {
|
366 |
-
"fill-color": "#702963",
|
367 |
-
}
|
368 |
-
}
|
369 |
-
]
|
370 |
-
}
|
371 |
-
|
372 |
-
def get_sv_style(column):
|
373 |
-
return {
|
374 |
-
"layers": [
|
375 |
-
{
|
376 |
-
"id": "SVI",
|
377 |
-
"source": column, #need different "source" for multiple pmtiles layers w/ same file
|
378 |
-
"source-layer": "SVI2020_US_county",
|
379 |
-
"filter": ["match", ["get", "STATE"], "California", True, False],
|
380 |
-
"type": "fill",
|
381 |
-
"paint": {
|
382 |
-
"fill-color": [
|
383 |
-
"interpolate", ["linear"], ["get", column],
|
384 |
-
0, white,
|
385 |
-
1, svi_color
|
386 |
-
]
|
387 |
-
}
|
388 |
-
}
|
389 |
-
]
|
390 |
-
}
|
391 |
-
|
392 |
-
|
393 |
-
def get_pmtiles_style(paint, alpha, filter_cols, filter_vals):
|
394 |
-
filters = []
|
395 |
-
for col, val in zip(filter_cols, filter_vals):
|
396 |
-
filters.append(["match", ["get", col], val, True, False])
|
397 |
-
combined_filters = ["all"] + filters
|
398 |
-
style = {
|
399 |
-
"version": 8,
|
400 |
-
"sources": {
|
401 |
-
"ca": {
|
402 |
-
"type": "vector",
|
403 |
-
"url": "pmtiles://" + ca_pmtiles,
|
404 |
-
}
|
405 |
-
},
|
406 |
-
"layers": [
|
407 |
-
{
|
408 |
-
"id": "ca30x30",
|
409 |
-
"source": "ca",
|
410 |
-
"source-layer": "layer",
|
411 |
-
"type": "fill",
|
412 |
-
"filter": combined_filters,
|
413 |
-
"paint": {
|
414 |
-
"fill-color": paint,
|
415 |
-
"fill-opacity": alpha
|
416 |
-
}
|
417 |
-
}
|
418 |
-
]
|
419 |
-
}
|
420 |
-
return style
|
421 |
|
422 |
st.set_page_config(layout="wide", page_title="CA Protected Areas Explorer", page_icon=":globe:")
|
423 |
|
@@ -509,38 +139,9 @@ m = leafmap.Map(style="positron")
|
|
509 |
#############
|
510 |
|
511 |
|
512 |
-
def get_pmtiles_style_llm(paint, ids):
|
513 |
-
combined_filters = ["all", ["match", ["get", "id"], ids, True, False]]
|
514 |
-
style = {
|
515 |
-
"version": 8,
|
516 |
-
"sources": {
|
517 |
-
"ca": {
|
518 |
-
"type": "vector",
|
519 |
-
"url": "pmtiles://" + ca_pmtiles,
|
520 |
-
}
|
521 |
-
},
|
522 |
-
"layers": [
|
523 |
-
{
|
524 |
-
"id": "ca30x30",
|
525 |
-
"source": "ca",
|
526 |
-
"source-layer": "layer",
|
527 |
-
"type": "fill",
|
528 |
-
"filter": combined_filters,
|
529 |
-
"paint": {
|
530 |
-
"fill-color": paint,
|
531 |
-
"fill-opacity": 1,
|
532 |
-
# "fill-extrusion-height": 1000
|
533 |
-
}
|
534 |
-
}
|
535 |
-
]
|
536 |
-
}
|
537 |
-
return style
|
538 |
|
539 |
-
##### Chatbot stuff
|
540 |
|
541 |
-
|
542 |
-
from langchain_community.utilities import SQLDatabase
|
543 |
-
db = SQLDatabase(eng, view_support=True)
|
544 |
|
545 |
|
546 |
from pydantic import BaseModel, Field
|
@@ -549,148 +150,8 @@ class SQLResponse(BaseModel):
|
|
549 |
sql_query: str = Field(description="The SQL query generated by the assistant.")
|
550 |
explanation: str = Field(description="A detailed explanation of how the SQL query answers the input question.")
|
551 |
|
552 |
-
|
553 |
-
|
554 |
-
template = '''You are an expert in SQL and an assistant for mapping and analyzing California land data. Given an input question, create a syntactically correct {dialect} query to run, and then provide an explanation of how you answered the input question.
|
555 |
-
|
556 |
-
For example:
|
557 |
-
{{
|
558 |
-
"sql_query": "SELECT * FROM my_table WHERE condition = 'value';",
|
559 |
-
"explanation": "This query retrieves all rows from my_table where the condition column equals 'value'."
|
560 |
-
}}
|
561 |
-
|
562 |
-
Ensure the response contains only this JSON object, with no additional text, formatting, or commentary.
|
563 |
-
|
564 |
-
# Important Details
|
565 |
-
|
566 |
-
- For map-related queries (e.g., "show me"), ALWAYS include "id," "geom", "name," and "acres" in the results, PLUS any other columns referenced in the query (e.g., in conditions, calculations, or subqueries). This output structure is MANDATORY for all map-related queries.
|
567 |
-
- ONLY use LIMIT in your SQL queries if the user specifies a quantity (e.g., 'show me 5'). Otherwise, return all matching data without a limit.
|
568 |
-
- Wrap each column name in double quotes (") to denote them as delimited identifiers.
|
569 |
-
- Pay attention to use only the column names you can see in the tables below. DO NOT query for columns that do not exist.
|
570 |
-
If the query mentions "biodiversity" without specifying a column, default to using "richness" (species richness). Explain this choice and that they can also request "rsr" (range-size rarity).
|
571 |
-
- If the query mentions carbon without specifying a column, use "irrecoverable carbon". Explain this choice and list the other carbon-related columns they can ask for, along with their definitions.
|
572 |
-
- If the query asks about the manager, use the "manager" column. You MUST ALWAYS explain the difference between manager and manager_type in your response. Clarify that "manager" refers to the name of the managing entity (e.g., an agency), while "manager_type" specifies the type of jurisdiction (e.g., Federal, State, Non Profit). Also, let the user know they can include "manager_type" in their query if they want to refine their results.
|
573 |
-
- If the user's query is unclear, DO NOT make assumptions. Instead, ask for clarification and provide examples of similar queries you can handle, using the columns or data available. You MUST ONLY deliver accurate results.
|
574 |
-
- If you are mapping the data, explicitly state that the data is being visualized on a map. ALWAYS include a statement encouraging the user to examine the queried data below the map, as some areas may be too small at the current zoom level.
|
575 |
-
- Users may not be familiar with this data, so your explanation should be short, clear, and easily understandable. You MUST state which column(s) you used to gather their query, along with definition(s) of the column(s). Do NOT explain SQL commands.
|
576 |
-
- If the prompt is unrelated to the California dataset, provide examples of relevant queries that you can answer.
|
577 |
-
|
578 |
-
# Example Questions and How to Approach Them
|
579 |
-
|
580 |
-
## Example:
|
581 |
-
example_user: "Show me all non-profit land."
|
582 |
-
example_assistant: {{"sql_query":
|
583 |
-
SELECT id, geom, name, acres
|
584 |
-
FROM mydata
|
585 |
-
WHERE "manager_type" = "Non Profit";
|
586 |
-
"explanation":"I selected all data where `manager_type` is 'Non Profit'."
|
587 |
-
}}
|
588 |
-
|
589 |
-
## Example:
|
590 |
-
example_user: "Which gap code has been impacted the most by fire?"
|
591 |
-
example_assistant: {{"sql_query":
|
592 |
-
SELECT "reGAP", SUM("percent_fire_10yr") AS temp
|
593 |
-
FROM mydata
|
594 |
-
GROUP BY "reGAP"
|
595 |
-
ORDER BY temp ASC
|
596 |
-
LIMIT 1;
|
597 |
-
"explanation":"I used the `percent_fire_10yr` column, which shows the percentage of each area burned over the past 10 years (2013–2022), summing it for each GAP code to find the one with the highest total fire impact."
|
598 |
-
}}
|
599 |
-
|
600 |
-
## Example:
|
601 |
-
example_user: "Who manages the land with the worst biodiversity and highest SVI?"
|
602 |
-
example_assistant: {{"sql_query":
|
603 |
-
SELECT manager,richness, svi
|
604 |
-
FROM mydata
|
605 |
-
GROUP BY "manager"
|
606 |
-
ORDER BY richness ASC, svi DESC
|
607 |
-
LIMIT 1;
|
608 |
-
"explanation": "I identified the land manager with the worst biodiversity and highest Social Vulnerability Index (SVI) by analyzing the columns: `richness`, which measures species richness, and `svi`, which represents social vulnerability based on factors like socioeconomic status, household characteristics, racial & ethnic minority status, and housing & transportation.
|
609 |
-
|
610 |
-
I sorted the data by richness in ascending order (worst biodiversity first) and svi in descending order (highest vulnerability). The result provides the manager, which is the name of the entity managing the land. Note that the manager column refers to the specific agency or organization responsible for managing the land, while`manager_type` categorizes the type of jurisdiction (e.g., Federal, State, Non Profit)."
|
611 |
-
}}
|
612 |
-
|
613 |
-
|
614 |
-
## Example:
|
615 |
-
example_user: "Show me the biggest protected area"
|
616 |
-
example_assistant: {{"sql_query":
|
617 |
-
SELECT "id", "geom", "name", "acres", "manager", "manager_type", "acres"
|
618 |
-
FROM mydata
|
619 |
-
ORDER BY "acres" DESC
|
620 |
-
LIMIT 1;
|
621 |
-
"explanation": "I identified the biggest protected area by sorting the data in descending order based on the `acres` column, which represents the size of each area."
|
622 |
-
|
623 |
-
## Example:
|
624 |
-
example_user: "Show me the 50 most biodiverse areas found in disadvantaged communities."
|
625 |
-
example_assistant: {{"sql_query":
|
626 |
-
SELECT "id", "geom", "name", "acres", "richness", "percent_disadvantaged" FROM mydata
|
627 |
-
WHERE "percent_disadvantaged" > 0
|
628 |
-
ORDER BY "richness" DESC
|
629 |
-
LIMIT 50;
|
630 |
-
"explanation": "I used the `richness` column to measure biodiversity and the `percent_disadvantaged` column to identify areas located in disadvantaged communities. The `percent_disadvantaged` value is derived from the Justice40 initiative, which identifies communities burdened by systemic inequities and vulnerabilities across multiple domains, including climate resilience, energy access, health disparities, housing affordability, pollution exposure, transportation infrastructure, water quality, and workforce opportunities.
|
631 |
-
|
632 |
-
The results are sorted in descending order by biodiversity richness (highest biodiversity first), and only areas with a `percent_disadvantaged` value greater than 0 (indicating some portion of the area overlaps with a disadvantaged community) are included."
|
633 |
-
}}
|
634 |
-
|
635 |
-
|
636 |
-
## Example:
|
637 |
-
example_user: "Show me federally managed gap 3 lands that are in the top 5% of biodiversity richness and have experienced forest fire over at least 50% of their area"
|
638 |
-
sql_query:
|
639 |
-
WITH temp_tab AS (
|
640 |
-
SELECT PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY "richness") AS temp
|
641 |
-
FROM mydata
|
642 |
-
)
|
643 |
-
SELECT "id", "geom", "name", "acres","richness", "reGAP"
|
644 |
-
FROM mydata
|
645 |
-
WHERE "reGAP" = 3
|
646 |
-
AND "percent_fire_10yr" >= 0.5
|
647 |
-
and "manager_type" = "Federal"
|
648 |
-
AND "richness" > (SELECT temp FROM temp_tab);
|
649 |
-
|
650 |
-
|
651 |
-
## Example:
|
652 |
-
example_user: "What is the total acreage of areas designated as easements?
|
653 |
-
sql_query:
|
654 |
-
SELECT SUM("acres") AS total_acres
|
655 |
-
FROM mydata
|
656 |
-
WHERE "easement" = "True";
|
657 |
-
|
658 |
-
|
659 |
-
# Detailed Explanation of the Columns in the California Dataset
|
660 |
-
- "established": The time range which the land was acquired, either "2024" or "pre-2024".
|
661 |
-
- "reGAP": The GAP status code; corresponds to the level of protection the area has. There are 4 gap codes and are defined as the following.
|
662 |
-
Status 1: Permanently protected to maintain a natural state, allowing natural disturbances or mimicking them through management.
|
663 |
-
Status 2: Permanently protected but may allow some uses or management practices that degrade natural communities or suppress natural disturbances.
|
664 |
-
Status 3: Permanently protected from major land cover conversion but allows some extractive uses (e.g., logging, mining) and protects federally listed species.
|
665 |
-
Status 4: No protection mandates; land may be converted to unnatural habitat types or its management intent is unknown.
|
666 |
-
|
667 |
-
- "name": The name of a protected area. The user may use a shortened name and/or not capitalize it. For example, "redwoods" may refer to "Redwood National Park", or "klamath" refers to "Klamath National Forest". Another example, "san diego wildlife refuge" could refer to multiple areas, so you would use "WHERE LOWER("name") LIKE '%san diego%' AND LOWER("name") LIKE '%wildlife%' AND LOWER("name") LIKE '%refuge%';" in your SQL query, to ensure that it is case-insensitive and matches any record that includes our phrases, because we don't want to overlook a match. If the name isn't capitalized, you MUST ensure the search is case-insensitive by converting "name" to lowercase.
|
668 |
-
The names of the largest parks are {names}.
|
669 |
-
- "access_type": Level of access to the land: "Unknown Access","Restricted Access","No Public Access" and "Open Access".
|
670 |
-
- "manager": The name of land manager for the area. Also referred to as the agency name. These are the manager names: {managers}. Users might use acronyms or could omit "United States" in the agency name, make sure to use the name used in the table. Some examples: "BLM" or "Bureau of Land Management" refers to the "United States Bureau of Land Management" or "CDFW" is "California Department of Fish and Wildlife". Similar to the "name" field, you can search for managers using "LIKE" in the SQL query.
|
671 |
-
- "manager_type": The jurisdiction of the land manager: "Federal","State","Non Profit","Special District","Unknown","County","City","Joint","Tribal","Private","HOA". If the user says "non-profit", do not use a hyphen in your query.
|
672 |
-
- "easement": Boolean value; whether or not the land is an easement.
|
673 |
-
- "acres": Land acreage; measures the size of the area.
|
674 |
-
- "id": unique id for each area. This is necessary for displaying queried results on a map.
|
675 |
-
- "type": Physical type of area, either "Land" or "Water".
|
676 |
-
- "richness": Species richness; higher values indicate better biodiversity.
|
677 |
-
- "rsr": Range-size rarity; higher values indicate better rarity metrics.
|
678 |
-
- "svi": Social Vulnerability Index based on 4 themes: socioeconomic status, household characteristics, racial & ethnic minority status, and housing & transportation. Higher values indicate greater vulnerability.
|
679 |
-
- Themes:
|
680 |
-
- "svi_socioeconomic_status": Poverty, unemployment, housing cost burden, education, and health insurance.
|
681 |
-
- "svi_household_char": Age, disability, single-parent households, and language proficiency.
|
682 |
-
- "svi_racial_ethnic_minority": Race and ethnicity variables.
|
683 |
-
- "svi_housing_transit": Housing type, crowding, vehicles, and group quarters.
|
684 |
-
- "percent_disadvantaged": Justice40-defined disadvantaged communities overburdened by climate, energy, health, housing, pollution, transportation, water, and workforce factors. Higher values indicate more disadvantage. Range is between 0 and 1.
|
685 |
-
- "deforest_carbon": Carbon emissions due to deforestation.
|
686 |
-
- "human_impact": A score representing the human footprint: cumulative anthropogenic impacts such as land cover change, population density, and infrastructure.
|
687 |
-
- "percent_fire_10yr": The percentage of the area burned by fires from (2013-2022). Range is between 0 and 1.
|
688 |
-
- "percent_rxburn_10yr": The percentage of the area affected by prescribed burns from (2013-2022). Range is between 0 and 1.
|
689 |
-
|
690 |
-
Only use the following tables:
|
691 |
-
{table_info}.
|
692 |
-
|
693 |
-
Question: {input}'''
|
694 |
|
695 |
from langchain_openai import ChatOpenAI
|
696 |
# os.environ["OPENAI_API_KEY"] = st.secrets["LITELLM_KEY"]
|
@@ -759,15 +220,13 @@ def run_sql(query,color_choice):
|
|
759 |
|
760 |
|
761 |
|
762 |
-
def summary_table_sql(column, colors, ids): # get df for charts + df_tab for printed table
|
763 |
filters = [_.id.isin(ids)]
|
764 |
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
|
765 |
df = get_summary(ca, combined_filter, [column], colors) # df used for charts
|
766 |
return df
|
767 |
|
768 |
|
769 |
-
|
770 |
-
|
771 |
chatbot_toggles = {key: False for key in [
|
772 |
'richness', 'rsr', 'irrecoverable_carbon', 'manageable_carbon',
|
773 |
'percent_fire_10yr', 'percent_rxburn_10yr', 'percent_disadvantaged',
|
@@ -959,13 +418,6 @@ if 'out' not in locals():
|
|
959 |
m.add_pmtiles(ca_pmtiles, style=style, name="CA", opacity=alpha, tooltip=True, fit_bounds = True)
|
960 |
|
961 |
|
962 |
-
select_column = {
|
963 |
-
"Year": "established",
|
964 |
-
"GAP Status Code": "reGAP",
|
965 |
-
"Manager Type": "manager_type",
|
966 |
-
"Easement": "easement",
|
967 |
-
"Access Type": "access_type",
|
968 |
-
}
|
969 |
|
970 |
column = select_column[color_choice]
|
971 |
|
@@ -986,9 +438,9 @@ colors = (
|
|
986 |
# get summary tables used for charts + printed table
|
987 |
# df - charts; df_tab - printed table (omits colors)
|
988 |
if 'out' not in locals():
|
989 |
-
df,df_tab = summary_table(column, colors, filter_cols, filter_vals, colorby_vals)
|
990 |
else:
|
991 |
-
df = summary_table_sql(column, colors, ids)
|
992 |
|
993 |
total_percent = df.percent_protected.sum().round(2)
|
994 |
|
@@ -1086,11 +538,6 @@ with main:
|
|
1086 |
|
1087 |
|
1088 |
|
1089 |
-
#########
|
1090 |
-
|
1091 |
-
|
1092 |
-
footer = st.container()
|
1093 |
-
|
1094 |
|
1095 |
|
1096 |
st.caption("***The label 'established' is inferred from the California Protected Areas Database, which may introduce artifacts. For details on our methodology, please refer to our code: https://github.com/boettiger-lab/ca-30x30.")
|
@@ -1101,31 +548,8 @@ st.caption("***Under California’s 30x30 framework, only GAP codes 1 and 2 are
|
|
1101 |
|
1102 |
st.divider()
|
1103 |
|
|
|
|
|
|
|
1104 |
|
1105 |
|
1106 |
-
'''
|
1107 |
-
## Credits
|
1108 |
-
Authors: Cassie Buhler & Carl Boettiger, UC Berkeley
|
1109 |
-
License: BSD-2-clause
|
1110 |
-
|
1111 |
-
Data: https://huggingface.co/datasets/boettiger-lab/ca-30x30
|
1112 |
-
|
1113 |
-
### Data sources
|
1114 |
-
- CA Nature Terrestrial 30x30 Conserved Areas map layer by CA Nature. Data: https://www.californianature.ca.gov/datasets/CAnature::30x30-conserved-areas-terrestrial-2024/about. License: Public Domain
|
1115 |
-
|
1116 |
-
- Imperiled Species Richness and Range-Size-Rarity from NatureServe (2022). Data: https://beta.source.coop/repositories/cboettig/mobi. License CC-BY-NC-ND
|
1117 |
-
|
1118 |
-
- Irrecoverable Carbon from Conservation International, reprocessed to COG on https://beta.source.coop/cboettig/carbon, citation: https://doi.org/10.1038/s41893-021-00803-6, License: CC-BY-NC
|
1119 |
-
|
1120 |
-
- Fire polygons by CAL FIRE (2022), reprocessed to PMTiles on https://beta.source.coop/cboettig/fire/. License: Public Domain
|
1121 |
-
|
1122 |
-
- Climate and Economic Justice Screening Tool, US Council on Environmental Quality, Justice40. Description: https://screeningtool.geoplatform.gov/en/methodology#3/33.47/-97.5. Data: https://beta.source.coop/repositories/cboettig/justice40/description/, License: Public Domain
|
1123 |
-
|
1124 |
-
- CDC 2020 Social Vulnerability Index by US Census Tract. Description: https://www.atsdr.cdc.gov/place-health/php/svi/index.html. Data: https://source.coop/repositories/cboettig/social-vulnerability/description. License: Public Domain
|
1125 |
-
|
1126 |
-
- Carbon-loss by Vizzuality, on https://beta.source.coop/repositories/vizzuality/lg-land-carbon-data. Citation: https://doi.org/10.1101/2023.11.01.565036, License: CC-BY
|
1127 |
-
|
1128 |
-
- Human Footprint by Vizzuality, on https://beta.source.coop/repositories/vizzuality/hfp-100. Citation: https://doi.org/10.3389/frsen.2023.1130896, License: Public Domain
|
1129 |
-
|
1130 |
-
'''
|
1131 |
-
|
|
|
13 |
import sqlalchemy
|
14 |
import pathlib
|
15 |
from typing import Optional
|
16 |
+
from functools import reduce
|
17 |
|
18 |
+
from variables import *
|
19 |
+
from utils import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Create the duckdb connection directly from the sqlalchemy engine instead.
|
24 |
+
# Not as elegant as `ibis.duckdb.connect()` but shares connection with sqlalchemy.
|
25 |
+
## Create the engine
|
26 |
+
#cwd = pathlib.Path.cwd()
|
27 |
+
#connect_args = {'preload_extensions':['spatial']}
|
28 |
+
#eng = sqlalchemy.create_engine(f"duckdb:///{cwd}/duck.db",connect_args = connect_args)
|
29 |
+
#con = ibis.duckdb.from_connection(eng.raw_connection())
|
30 |
|
31 |
## Create the table from remote parquet only if it doesn't already exist on disk
|
32 |
+
|
33 |
+
con = ibis.duckdb.connect(extensions=["spatial"])
|
34 |
current_tables = con.list_tables()
|
35 |
if "mydata" not in set(current_tables):
|
36 |
tbl = con.read_parquet(ca_parquet)
|
37 |
con.create_table("mydata", tbl)
|
|
|
38 |
ca = con.table("mydata")
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
for key in [
|
42 |
'richness', 'rsr', 'irrecoverable_carbon', 'manageable_carbon',
|
|
|
47 |
]:
|
48 |
if key not in st.session_state:
|
49 |
st.session_state[key] = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
st.set_page_config(layout="wide", page_title="CA Protected Areas Explorer", page_icon=":globe:")
|
53 |
|
|
|
139 |
#############
|
140 |
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
|
|
143 |
|
144 |
+
##### Chatbot stuff
|
|
|
|
|
145 |
|
146 |
|
147 |
from pydantic import BaseModel, Field
|
|
|
150 |
sql_query: str = Field(description="The SQL query generated by the assistant.")
|
151 |
explanation: str = Field(description="A detailed explanation of how the SQL query answers the input question.")
|
152 |
|
153 |
+
with open('system_prompt.txt', 'r') as file:
|
154 |
+
template = file.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
from langchain_openai import ChatOpenAI
|
157 |
# os.environ["OPENAI_API_KEY"] = st.secrets["LITELLM_KEY"]
|
|
|
220 |
|
221 |
|
222 |
|
223 |
+
def summary_table_sql(ca, column, colors, ids): # get df for charts + df_tab for printed table
|
224 |
filters = [_.id.isin(ids)]
|
225 |
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
|
226 |
df = get_summary(ca, combined_filter, [column], colors) # df used for charts
|
227 |
return df
|
228 |
|
229 |
|
|
|
|
|
230 |
chatbot_toggles = {key: False for key in [
|
231 |
'richness', 'rsr', 'irrecoverable_carbon', 'manageable_carbon',
|
232 |
'percent_fire_10yr', 'percent_rxburn_10yr', 'percent_disadvantaged',
|
|
|
418 |
m.add_pmtiles(ca_pmtiles, style=style, name="CA", opacity=alpha, tooltip=True, fit_bounds = True)
|
419 |
|
420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
column = select_column[color_choice]
|
423 |
|
|
|
438 |
# get summary tables used for charts + printed table
|
439 |
# df - charts; df_tab - printed table (omits colors)
|
440 |
if 'out' not in locals():
|
441 |
+
df,df_tab = summary_table(ca, column, colors, filter_cols, filter_vals, colorby_vals)
|
442 |
else:
|
443 |
+
df = summary_table_sql(ca, column, colors, ids)
|
444 |
|
445 |
total_percent = df.percent_protected.sum().round(2)
|
446 |
|
|
|
538 |
|
539 |
|
540 |
|
|
|
|
|
|
|
|
|
|
|
541 |
|
542 |
|
543 |
st.caption("***The label 'established' is inferred from the California Protected Areas Database, which may introduce artifacts. For details on our methodology, please refer to our code: https://github.com/boettiger-lab/ca-30x30.")
|
|
|
548 |
|
549 |
st.divider()
|
550 |
|
551 |
+
with open('footer.md', 'r') as file:
|
552 |
+
footer = file.read()
|
553 |
+
st.markdown(footer)
|
554 |
|
555 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/footer.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Credits
|
2 |
+
Authors: Cassie Buhler & Carl Boettiger, UC Berkeley
|
3 |
+
License: BSD-2-clause
|
4 |
+
|
5 |
+
Data: https://huggingface.co/datasets/boettiger-lab/ca-30x30
|
6 |
+
|
7 |
+
### Data sources
|
8 |
+
- CA Nature Terrestrial 30x30 Conserved Areas map layer by CA Nature. Data: https://www.californianature.ca.gov/datasets/CAnature::30x30-conserved-areas-terrestrial-2024/about. License: Public Domain
|
9 |
+
|
10 |
+
- Imperiled Species Richness and Range-Size-Rarity from NatureServe (2022). Data: https://beta.source.coop/repositories/cboettig/mobi. License CC-BY-NC-ND
|
11 |
+
|
12 |
+
- Irrecoverable Carbon from Conservation International, reprocessed to COG on https://beta.source.coop/cboettig/carbon, citation: https://doi.org/10.1038/s41893-021-00803-6, License: CC-BY-NC
|
13 |
+
|
14 |
+
- Fire polygons by CAL FIRE (2022), reprocessed to PMTiles on https://beta.source.coop/cboettig/fire/. License: Public Domain
|
15 |
+
|
16 |
+
- Climate and Economic Justice Screening Tool, US Council on Environmental Quality, Justice40. Description: https://screeningtool.geoplatform.gov/en/methodology#3/33.47/-97.5. Data: https://beta.source.coop/repositories/cboettig/justice40/description/, License: Public Domain
|
17 |
+
|
18 |
+
- CDC 2020 Social Vulnerability Index by US Census Tract. Description: https://www.atsdr.cdc.gov/place-health/php/svi/index.html. Data: https://source.coop/repositories/cboettig/social-vulnerability/description. License: Public Domain
|
19 |
+
|
20 |
+
- Carbon-loss by Vizzuality, on https://beta.source.coop/repositories/vizzuality/lg-land-carbon-data. Citation: https://doi.org/10.1101/2023.11.01.565036, License: CC-BY
|
21 |
+
|
22 |
+
- Human Footprint by Vizzuality, on https://beta.source.coop/repositories/vizzuality/hfp-100. Citation: https://doi.org/10.3389/frsen.2023.1130896, License: Public Domain
|
app/system_prompt.txt
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are an expert in SQL and an assistant for mapping and analyzing California land data. Given an input question, create a syntactically correct {dialect} query to run, and then provide an explanation of how you answered the input question.
|
2 |
+
|
3 |
+
For example:
|
4 |
+
{{
|
5 |
+
"sql_query": "SELECT * FROM my_table WHERE condition = 'value';",
|
6 |
+
"explanation": "This query retrieves all rows from my_table where the condition column equals 'value'."
|
7 |
+
}}
|
8 |
+
|
9 |
+
Ensure the response contains only this JSON object, with no additional text, formatting, or commentary.
|
10 |
+
|
11 |
+
# Important Details
|
12 |
+
|
13 |
+
- For map-related queries (e.g., "show me"), ALWAYS include "id," "geom", "name," and "acres" in the results, PLUS any other columns referenced in the query (e.g., in conditions, calculations, or subqueries). This output structure is MANDATORY for all map-related queries.
|
14 |
+
- ONLY use LIMIT in your SQL queries if the user specifies a quantity (e.g., 'show me 5'). Otherwise, return all matching data without a limit.
|
15 |
+
- Wrap each column name in double quotes (") to denote them as delimited identifiers.
|
16 |
+
- Pay attention to use only the column names you can see in the tables below. DO NOT query for columns that do not exist.
|
17 |
+
If the query mentions "biodiversity" without specifying a column, default to using "richness" (species richness). Explain this choice and that they can also request "rsr" (range-size rarity).
|
18 |
+
- If the query mentions carbon without specifying a column, use "irrecoverable carbon". Explain this choice and list the other carbon-related columns they can ask for, along with their definitions.
|
19 |
+
- If the query asks about the manager, use the "manager" column. You MUST ALWAYS explain the difference between manager and manager_type in your response. Clarify that "manager" refers to the name of the managing entity (e.g., an agency), while "manager_type" specifies the type of jurisdiction (e.g., Federal, State, Non Profit). Also, let the user know they can include "manager_type" in their query if they want to refine their results.
|
20 |
+
- If the user's query is unclear, DO NOT make assumptions. Instead, ask for clarification and provide examples of similar queries you can handle, using the columns or data available. You MUST ONLY deliver accurate results.
|
21 |
+
- If you are mapping the data, explicitly state that the data is being visualized on a map. ALWAYS include a statement encouraging the user to examine the queried data below the map, as some areas may be too small at the current zoom level.
|
22 |
+
- Users may not be familiar with this data, so your explanation should be short, clear, and easily understandable. You MUST state which column(s) you used to gather their query, along with definition(s) of the column(s). Do NOT explain SQL commands.
|
23 |
+
- If the prompt is unrelated to the California dataset, provide examples of relevant queries that you can answer.
|
24 |
+
|
25 |
+
# Example Questions and How to Approach Them
|
26 |
+
|
27 |
+
## Example:
|
28 |
+
example_user: "Show me all non-profit land."
|
29 |
+
example_assistant: {{"sql_query":
|
30 |
+
SELECT id, geom, name, acres
|
31 |
+
FROM mydata
|
32 |
+
WHERE "manager_type" = "Non Profit";
|
33 |
+
"explanation":"I selected all data where `manager_type` is 'Non Profit'."
|
34 |
+
}}
|
35 |
+
|
36 |
+
## Example:
|
37 |
+
example_user: "Which gap code has been impacted the most by fire?"
|
38 |
+
example_assistant: {{"sql_query":
|
39 |
+
SELECT "reGAP", SUM("percent_fire_10yr") AS temp
|
40 |
+
FROM mydata
|
41 |
+
GROUP BY "reGAP"
|
42 |
+
ORDER BY temp ASC
|
43 |
+
LIMIT 1;
|
44 |
+
"explanation":"I used the `percent_fire_10yr` column, which shows the percentage of each area burned over the past 10 years (2013–2022), summing it for each GAP code to find the one with the highest total fire impact."
|
45 |
+
}}
|
46 |
+
|
47 |
+
## Example:
|
48 |
+
example_user: "Who manages the land with the worst biodiversity and highest SVI?"
|
49 |
+
example_assistant: {{"sql_query":
|
50 |
+
SELECT manager,richness, svi
|
51 |
+
FROM mydata
|
52 |
+
GROUP BY "manager"
|
53 |
+
ORDER BY richness ASC, svi DESC
|
54 |
+
LIMIT 1;
|
55 |
+
"explanation": "I identified the land manager with the worst biodiversity and highest Social Vulnerability Index (SVI) by analyzing the columns: `richness`, which measures species richness, and `svi`, which represents social vulnerability based on factors like socioeconomic status, household characteristics, racial & ethnic minority status, and housing & transportation.
|
56 |
+
|
57 |
+
I sorted the data by richness in ascending order (worst biodiversity first) and svi in descending order (highest vulnerability). The result provides the manager, which is the name of the entity managing the land. Note that the manager column refers to the specific agency or organization responsible for managing the land, while`manager_type` categorizes the type of jurisdiction (e.g., Federal, State, Non Profit)."
|
58 |
+
}}
|
59 |
+
|
60 |
+
|
61 |
+
## Example:
|
62 |
+
example_user: "Show me the biggest protected area"
|
63 |
+
example_assistant: {{"sql_query":
|
64 |
+
SELECT "id", "geom", "name", "acres", "manager", "manager_type", "acres"
|
65 |
+
FROM mydata
|
66 |
+
ORDER BY "acres" DESC
|
67 |
+
LIMIT 1;
|
68 |
+
"explanation": "I identified the biggest protected area by sorting the data in descending order based on the `acres` column, which represents the size of each area."
|
69 |
+
|
70 |
+
## Example:
|
71 |
+
example_user: "Show me the 50 most biodiverse areas found in disadvantaged communities."
|
72 |
+
example_assistant: {{"sql_query":
|
73 |
+
SELECT "id", "geom", "name", "acres", "richness", "percent_disadvantaged" FROM mydata
|
74 |
+
WHERE "percent_disadvantaged" > 0
|
75 |
+
ORDER BY "richness" DESC
|
76 |
+
LIMIT 50;
|
77 |
+
"explanation": "I used the `richness` column to measure biodiversity and the `percent_disadvantaged` column to identify areas located in disadvantaged communities. The `percent_disadvantaged` value is derived from the Justice40 initiative, which identifies communities burdened by systemic inequities and vulnerabilities across multiple domains, including climate resilience, energy access, health disparities, housing affordability, pollution exposure, transportation infrastructure, water quality, and workforce opportunities.
|
78 |
+
|
79 |
+
The results are sorted in descending order by biodiversity richness (highest biodiversity first), and only areas with a `percent_disadvantaged` value greater than 0 (indicating some portion of the area overlaps with a disadvantaged community) are included."
|
80 |
+
}}
|
81 |
+
|
82 |
+
|
83 |
+
## Example:
|
84 |
+
example_user: "Show me federally managed gap 3 lands that are in the top 5% of biodiversity richness and have experienced forest fire over at least 50% of their area"
|
85 |
+
sql_query:
|
86 |
+
WITH temp_tab AS (
|
87 |
+
SELECT PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY "richness") AS temp
|
88 |
+
FROM mydata
|
89 |
+
)
|
90 |
+
SELECT "id", "geom", "name", "acres","richness", "reGAP"
|
91 |
+
FROM mydata
|
92 |
+
WHERE "reGAP" = 3
|
93 |
+
AND "percent_fire_10yr" >= 0.5
|
94 |
+
and "manager_type" = "Federal"
|
95 |
+
AND "richness" > (SELECT temp FROM temp_tab);
|
96 |
+
|
97 |
+
|
98 |
+
## Example:
|
99 |
+
example_user: "What is the total acreage of areas designated as easements?
|
100 |
+
sql_query:
|
101 |
+
SELECT SUM("acres") AS total_acres
|
102 |
+
FROM mydata
|
103 |
+
WHERE "easement" = "True";
|
104 |
+
|
105 |
+
|
106 |
+
# Detailed Explanation of the Columns in the California Dataset
|
107 |
+
- "established": The time range which the land was acquired, either "2024" or "pre-2024".
|
108 |
+
- "reGAP": The GAP status code; corresponds to the level of protection the area has. There are 4 gap codes and are defined as the following.
|
109 |
+
Status 1: Permanently protected to maintain a natural state, allowing natural disturbances or mimicking them through management.
|
110 |
+
Status 2: Permanently protected but may allow some uses or management practices that degrade natural communities or suppress natural disturbances.
|
111 |
+
Status 3: Permanently protected from major land cover conversion but allows some extractive uses (e.g., logging, mining) and protects federally listed species.
|
112 |
+
Status 4: No protection mandates; land may be converted to unnatural habitat types or its management intent is unknown.
|
113 |
+
|
114 |
+
- "name": The name of a protected area. The user may use a shortened name and/or not capitalize it. For example, "redwoods" may refer to "Redwood National Park", or "klamath" refers to "Klamath National Forest". Another example, "san diego wildlife refuge" could refer to multiple areas, so you would use "WHERE LOWER("name") LIKE '%san diego%' AND LOWER("name") LIKE '%wildlife%' AND LOWER("name") LIKE '%refuge%';" in your SQL query, to ensure that it is case-insensitive and matches any record that includes our phrases, because we don't want to overlook a match. If the name isn't capitalized, you MUST ensure the search is case-insensitive by converting "name" to lowercase.
|
115 |
+
The names of the largest parks are {names}.
|
116 |
+
- "access_type": Level of access to the land: "Unknown Access","Restricted Access","No Public Access" and "Open Access".
|
117 |
+
- "manager": The name of land manager for the area. Also referred to as the agency name. These are the manager names: {managers}. Users might use acronyms or could omit "United States" in the agency name, make sure to use the name used in the table. Some examples: "BLM" or "Bureau of Land Management" refers to the "United States Bureau of Land Management" or "CDFW" is "California Department of Fish and Wildlife". Similar to the "name" field, you can search for managers using "LIKE" in the SQL query.
|
118 |
+
- "manager_type": The jurisdiction of the land manager: "Federal","State","Non Profit","Special District","Unknown","County","City","Joint","Tribal","Private","HOA". If the user says "non-profit", do not use a hyphen in your query.
|
119 |
+
- "easement": Boolean value; whether or not the land is an easement.
|
120 |
+
- "acres": Land acreage; measures the size of the area.
|
121 |
+
- "id": unique id for each area. This is necessary for displaying queried results on a map.
|
122 |
+
- "type": Physical type of area, either "Land" or "Water".
|
123 |
+
- "richness": Species richness; higher values indicate better biodiversity.
|
124 |
+
- "rsr": Range-size rarity; higher values indicate better rarity metrics.
|
125 |
+
- "svi": Social Vulnerability Index based on 4 themes: socioeconomic status, household characteristics, racial & ethnic minority status, and housing & transportation. Higher values indicate greater vulnerability.
|
126 |
+
- Themes:
|
127 |
+
- "svi_socioeconomic_status": Poverty, unemployment, housing cost burden, education, and health insurance.
|
128 |
+
- "svi_household_char": Age, disability, single-parent households, and language proficiency.
|
129 |
+
- "svi_racial_ethnic_minority": Race and ethnicity variables.
|
130 |
+
- "svi_housing_transit": Housing type, crowding, vehicles, and group quarters.
|
131 |
+
- "percent_disadvantaged": Justice40-defined disadvantaged communities overburdened by climate, energy, health, housing, pollution, transportation, water, and workforce factors. Higher values indicate more disadvantage. Range is between 0 and 1.
|
132 |
+
- "deforest_carbon": Carbon emissions due to deforestation.
|
133 |
+
- "human_impact": A score representing the human footprint: cumulative anthropogenic impacts such as land cover change, population density, and infrastructure.
|
134 |
+
- "percent_fire_10yr": The percentage of the area burned by fires from (2013-2022). Range is between 0 and 1.
|
135 |
+
- "percent_rxburn_10yr": The percentage of the area affected by prescribed burns from (2013-2022). Range is between 0 and 1.
|
136 |
+
|
137 |
+
Only use the following tables:
|
138 |
+
{table_info}.
|
139 |
+
|
140 |
+
Question: {input}
|
app/utils.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import streamlit.components.v1 as components
|
3 |
+
import base64
|
4 |
+
import leafmap.maplibregl as leafmap
|
5 |
+
import altair as alt
|
6 |
+
import ibis
|
7 |
+
from ibis import _
|
8 |
+
import ibis.selectors as s
|
9 |
+
import os
|
10 |
+
import pandas as pd
|
11 |
+
import geopandas as gpd
|
12 |
+
from shapely import wkb
|
13 |
+
import sqlalchemy
|
14 |
+
import pathlib
|
15 |
+
from typing import Optional
|
16 |
+
from functools import reduce
|
17 |
+
|
18 |
+
from variables import *
|
19 |
+
|
20 |
+
def get_summary(ca, combined_filter, column, colors=None): #summary stats, based on filtered data
|
21 |
+
df = ca.filter(combined_filter)
|
22 |
+
df = (df
|
23 |
+
.group_by(*column) # unpack the list for grouping
|
24 |
+
.aggregate(percent_protected=100 * _.acres.sum() / ca_area_acres,
|
25 |
+
mean_richness = (_.richness * _.acres).sum() / _.acres.sum(),
|
26 |
+
mean_rsr = (_.rsr * _.acres).sum() / _.acres.sum(),
|
27 |
+
mean_irrecoverable_carbon = (_.irrecoverable_carbon * _.acres).sum() / _.acres.sum(),
|
28 |
+
mean_manageable_carbon = (_.manageable_carbon * _.acres).sum() / _.acres.sum(),
|
29 |
+
mean_percent_fire_10yr = (_.percent_fire_10yr *_.acres).sum()/_.acres.sum(),
|
30 |
+
mean_percent_rxburn_10yr = (_.percent_rxburn_10yr *_.acres).sum()/_.acres.sum(),
|
31 |
+
mean_percent_disadvantaged = (_.percent_disadvantaged * _.acres).sum() / _.acres.sum(),
|
32 |
+
mean_svi = (_.svi * _.acres).sum() / _.acres.sum(),
|
33 |
+
mean_svi_socioeconomic_status = (_.svi_socioeconomic_status * _.acres).sum() / _.acres.sum(),
|
34 |
+
mean_svi_household_char = (_.svi_household_char * _.acres).sum() / _.acres.sum(),
|
35 |
+
mean_svi_racial_ethnic_minority = (_.svi_racial_ethnic_minority * _.acres).sum() / _.acres.sum(),
|
36 |
+
mean_svi_housing_transit = (_.svi_housing_transit * _.acres).sum() / _.acres.sum(),
|
37 |
+
mean_carbon_lost = (_.deforest_carbon * _.acres).sum() / _.acres.sum(),
|
38 |
+
mean_human_impact = (_.human_impact * _.acres).sum() / _.acres.sum(),
|
39 |
+
)
|
40 |
+
.mutate(percent_protected=_.percent_protected.round(1))
|
41 |
+
)
|
42 |
+
if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it.
|
43 |
+
df = df.inner_join(colors, column)
|
44 |
+
df = df.cast({col: "string" for col in column})
|
45 |
+
df = df.to_pandas()
|
46 |
+
return df
|
47 |
+
|
48 |
+
|
49 |
+
def summary_table(ca, column, colors, filter_cols, filter_vals,colorby_vals): # get df for charts + df_tab for printed table
|
50 |
+
filters = []
|
51 |
+
if filter_cols and filter_vals: #if a filter is selected, add to list of filters
|
52 |
+
for filter_col, filter_val in zip(filter_cols, filter_vals):
|
53 |
+
if len(filter_val) > 1:
|
54 |
+
filters.append(getattr(_, filter_col).isin(filter_val))
|
55 |
+
else:
|
56 |
+
filters.append(getattr(_, filter_col) == filter_val[0])
|
57 |
+
if column not in filter_cols: #show color_by column in table by adding it as a filter (if it's not already a filter)
|
58 |
+
filter_cols.append(column)
|
59 |
+
filters.append(getattr(_, column).isin(colorby_vals[column]))
|
60 |
+
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
|
61 |
+
df = get_summary(ca, combined_filter, [column], colors) # df used for charts
|
62 |
+
df_tab = get_summary(ca, combined_filter, filter_cols, colors = None) #df used for printed table
|
63 |
+
return df, df_tab
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
def area_plot(df, column): #percent protected pie chart
|
68 |
+
base = alt.Chart(df).encode(
|
69 |
+
alt.Theta("percent_protected:Q").stack(True),
|
70 |
+
)
|
71 |
+
pie = ( base
|
72 |
+
.mark_arc(innerRadius= 40, outerRadius=100)
|
73 |
+
.encode(alt.Color("color:N").scale(None).legend(None),
|
74 |
+
tooltip=['percent_protected', column])
|
75 |
+
)
|
76 |
+
text = ( base
|
77 |
+
.mark_text(radius=80, size=14, color="white")
|
78 |
+
.encode(text = column + ":N")
|
79 |
+
)
|
80 |
+
plot = pie # pie + text
|
81 |
+
return plot.properties(width="container", height=290)
|
82 |
+
|
83 |
+
|
84 |
+
def bar_chart(df, x, y, title): #display summary stats for color_by column
|
85 |
+
|
86 |
+
#axis label angles / chart size
|
87 |
+
if x == "manager_type": #labels are too long, making vertical
|
88 |
+
angle = 270
|
89 |
+
height = 373
|
90 |
+
else: #other labels are horizontal
|
91 |
+
angle = 0
|
92 |
+
height = 310
|
93 |
+
|
94 |
+
# order of bars
|
95 |
+
if x == "established": # order labels in chronological order, not alphabetic.
|
96 |
+
sort = '-x'
|
97 |
+
elif x == "access_type": #order based on levels of openness
|
98 |
+
sort=['Open', 'Restricted', 'No Public', "Unknown"]
|
99 |
+
elif x == "manager_type":
|
100 |
+
sort = ["Federal","Tribal","State","Special District", "County", "City", "HOA","Joint","Non Profit","Private","Unknown"]
|
101 |
+
else:
|
102 |
+
sort = 'x'
|
103 |
+
|
104 |
+
x_title = next(key for key, value in select_column.items() if value == x)
|
105 |
+
chart = alt.Chart(df).mark_bar().transform_calculate(
|
106 |
+
access_label=f"replace(datum.{x}, ' Access', '')" #omit access from access_type labels so it fits in frame
|
107 |
+
).encode(
|
108 |
+
x=alt.X("access_label:N",
|
109 |
+
axis=alt.Axis(labelAngle=angle, title=x_title),
|
110 |
+
sort=sort),
|
111 |
+
y=alt.Y(y, axis=alt.Axis()),
|
112 |
+
color=alt.Color('color').scale(None)
|
113 |
+
).properties(width="container", height=height, title = title
|
114 |
+
)
|
115 |
+
# sizing for poster
|
116 |
+
# ).configure_title(
|
117 |
+
# fontSize=40
|
118 |
+
# ).configure_axis(
|
119 |
+
# labelFontSize=24,
|
120 |
+
# titleFontSize=34
|
121 |
+
# )
|
122 |
+
return chart
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
def getButtons(style_options, style_choice, default_gap=None): #finding the buttons selected to use as filters
|
127 |
+
column = style_options[style_choice]['property']
|
128 |
+
opts = [style[0] for style in style_options[style_choice]['stops']]
|
129 |
+
default_gap = default_gap or {}
|
130 |
+
buttons = {
|
131 |
+
name: st.checkbox(f"{name}", value=default_gap.get(name, True), key=column + str(name))
|
132 |
+
for name in opts
|
133 |
+
}
|
134 |
+
filter_choice = [key for key, value in buttons.items() if value] # return only selected
|
135 |
+
d = {}
|
136 |
+
d[column] = filter_choice
|
137 |
+
return d
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
def getColorVals(style_options, style_choice):
|
142 |
+
#df_tab only includes filters selected, we need to manually add "color_by" column (if it's not already a filter).
|
143 |
+
column = style_options[style_choice]['property']
|
144 |
+
opts = [style[0] for style in style_options[style_choice]['stops']]
|
145 |
+
d = {}
|
146 |
+
d[column] = opts
|
147 |
+
return d
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
def fire_style(layer):
|
152 |
+
return {"version": 8,
|
153 |
+
"sources": {
|
154 |
+
"source1": {
|
155 |
+
"type": "vector",
|
156 |
+
"url": "pmtiles://" + url_calfire,
|
157 |
+
"attribution": "CAL FIRE"
|
158 |
+
}
|
159 |
+
},
|
160 |
+
"layers": [
|
161 |
+
{
|
162 |
+
"id": "fire",
|
163 |
+
"source": "source1",
|
164 |
+
"source-layer": layer,
|
165 |
+
"type": "fill",
|
166 |
+
"paint": {
|
167 |
+
"fill-color": "#D22B2B",
|
168 |
+
}
|
169 |
+
}
|
170 |
+
]
|
171 |
+
}
|
172 |
+
def rx_style(layer):
|
173 |
+
return{
|
174 |
+
"version": 8,
|
175 |
+
"sources": {
|
176 |
+
"source2": {
|
177 |
+
"type": "vector",
|
178 |
+
"url": "pmtiles://" + url_rxburn,
|
179 |
+
"attribution": "CAL FIRE"
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"layers": [
|
183 |
+
{
|
184 |
+
"id": "fire",
|
185 |
+
"source": "source2",
|
186 |
+
"source-layer": layer,
|
187 |
+
# "filter": [">=", ["get", "YEAR_"], year],
|
188 |
+
"type": "fill",
|
189 |
+
"paint": {
|
190 |
+
"fill-color": "#702963",
|
191 |
+
}
|
192 |
+
}
|
193 |
+
]
|
194 |
+
}
|
195 |
+
|
196 |
+
def get_sv_style(column):
|
197 |
+
return {
|
198 |
+
"layers": [
|
199 |
+
{
|
200 |
+
"id": "SVI",
|
201 |
+
"source": column, #need different "source" for multiple pmtiles layers w/ same file
|
202 |
+
"source-layer": "SVI2020_US_county",
|
203 |
+
"filter": ["match", ["get", "STATE"], "California", True, False],
|
204 |
+
"type": "fill",
|
205 |
+
"paint": {
|
206 |
+
"fill-color": [
|
207 |
+
"interpolate", ["linear"], ["get", column],
|
208 |
+
0, white,
|
209 |
+
1, svi_color
|
210 |
+
]
|
211 |
+
}
|
212 |
+
}
|
213 |
+
]
|
214 |
+
}
|
215 |
+
|
216 |
+
|
217 |
+
def get_pmtiles_style(paint, alpha, filter_cols, filter_vals):
|
218 |
+
filters = []
|
219 |
+
for col, val in zip(filter_cols, filter_vals):
|
220 |
+
filters.append(["match", ["get", col], val, True, False])
|
221 |
+
combined_filters = ["all"] + filters
|
222 |
+
style = {
|
223 |
+
"version": 8,
|
224 |
+
"sources": {
|
225 |
+
"ca": {
|
226 |
+
"type": "vector",
|
227 |
+
"url": "pmtiles://" + ca_pmtiles,
|
228 |
+
}
|
229 |
+
},
|
230 |
+
"layers": [
|
231 |
+
{
|
232 |
+
"id": "ca30x30",
|
233 |
+
"source": "ca",
|
234 |
+
"source-layer": "layer",
|
235 |
+
"type": "fill",
|
236 |
+
"filter": combined_filters,
|
237 |
+
"paint": {
|
238 |
+
"fill-color": paint,
|
239 |
+
"fill-opacity": alpha
|
240 |
+
}
|
241 |
+
}
|
242 |
+
]
|
243 |
+
}
|
244 |
+
return style
|
245 |
+
|
246 |
+
def get_pmtiles_style_llm(paint, ids):
|
247 |
+
combined_filters = ["all", ["match", ["get", "id"], ids, True, False]]
|
248 |
+
style = {
|
249 |
+
"version": 8,
|
250 |
+
"sources": {
|
251 |
+
"ca": {
|
252 |
+
"type": "vector",
|
253 |
+
"url": "pmtiles://" + ca_pmtiles,
|
254 |
+
}
|
255 |
+
},
|
256 |
+
"layers": [
|
257 |
+
{
|
258 |
+
"id": "ca30x30",
|
259 |
+
"source": "ca",
|
260 |
+
"source-layer": "layer",
|
261 |
+
"type": "fill",
|
262 |
+
"filter": combined_filters,
|
263 |
+
"paint": {
|
264 |
+
"fill-color": paint,
|
265 |
+
"fill-opacity": 1,
|
266 |
+
# "fill-extrusion-height": 1000
|
267 |
+
}
|
268 |
+
}
|
269 |
+
]
|
270 |
+
}
|
271 |
+
return style
|
app/variables.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# urls for main layer
|
2 |
+
ca_pmtiles = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cpad-stats.pmtiles"
|
3 |
+
ca_parquet = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cpad-stats.parquet"
|
4 |
+
|
5 |
+
ca_area_acres = 1.014e8 #acres
|
6 |
+
style_choice = "GAP Status Code"
|
7 |
+
|
8 |
+
|
9 |
+
# urls for additional data layers
|
10 |
+
url_sr = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/species-richness-ca/{z}/{x}/{y}.png"
|
11 |
+
url_rsr = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/range-size-rarity/{z}/{x}/{y}.png"
|
12 |
+
url_irr_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_irrecoverable_c_2018_cog.tif"
|
13 |
+
url_man_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_manageable_c_2018_cog.tif"
|
14 |
+
url_svi = "https://data.source.coop/cboettig/social-vulnerability/svi2020_us_county.pmtiles"
|
15 |
+
url_justice40 = "https://data.source.coop/cboettig/justice40/disadvantaged-communities.pmtiles"
|
16 |
+
url_loss_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/deforest-carbon-ca/{z}/{x}/{y}.png"
|
17 |
+
url_hi = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_human_impact_cog.tif"
|
18 |
+
url_calfire = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cal_fire_2022.pmtiles"
|
19 |
+
url_rxburn = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cal_rxburn_2022.pmtiles"
|
20 |
+
|
21 |
+
# colors for plotting
|
22 |
+
private_access_color = "#DE881E" # orange
|
23 |
+
public_access_color = "#3388ff" # blue
|
24 |
+
tribal_color = "#BF40BF" # purple
|
25 |
+
mixed_color = "#005a00" # green
|
26 |
+
year2023_color = "#26542C" # green
|
27 |
+
year2024_color = "#F3AB3D" # orange
|
28 |
+
federal_color = "#529642" # green
|
29 |
+
state_color = "#A1B03D" # light green
|
30 |
+
local_color = "#365591" # blue
|
31 |
+
special_color = "#0096FF" # blue
|
32 |
+
private_color = "#7A3F1A" # brown
|
33 |
+
joint_color = "#DAB0AE" # light pink
|
34 |
+
county_color = "#DE3163" # magenta
|
35 |
+
city_color = "#ADD8E6" #light blue
|
36 |
+
hoa_color = "#A89BBC" # purple
|
37 |
+
nonprofit_color = "#D77031" #orange
|
38 |
+
justice40_color = "#00008B" #purple
|
39 |
+
svi_color = "#1bc7c3" #cyan
|
40 |
+
white = "#FFFFFF"
|
41 |
+
|
42 |
+
# gap codes 3 and 4 are off by default.
|
43 |
+
default_gap = {
|
44 |
+
3: False,
|
45 |
+
4: False,
|
46 |
+
}
|
47 |
+
|
48 |
+
# Maplibre styles. (should these be functions?)
|
49 |
+
manager = {
|
50 |
+
'property': 'manager_type',
|
51 |
+
'type': 'categorical',
|
52 |
+
'stops': [
|
53 |
+
['Federal', federal_color],
|
54 |
+
['State', state_color],
|
55 |
+
['Non Profit', nonprofit_color],
|
56 |
+
['Special District', special_color],
|
57 |
+
['Unknown', "#bbbbbb"],
|
58 |
+
['County', county_color],
|
59 |
+
['City', city_color],
|
60 |
+
['Joint', joint_color],
|
61 |
+
['Tribal', tribal_color],
|
62 |
+
['Private', private_color],
|
63 |
+
['HOA', hoa_color]
|
64 |
+
]
|
65 |
+
}
|
66 |
+
|
67 |
+
easement = {
|
68 |
+
'property': 'easement',
|
69 |
+
'type': 'categorical',
|
70 |
+
'stops': [
|
71 |
+
['True', private_access_color],
|
72 |
+
['False', public_access_color]
|
73 |
+
]
|
74 |
+
}
|
75 |
+
|
76 |
+
year = {
|
77 |
+
'property': 'established',
|
78 |
+
'type': 'categorical',
|
79 |
+
'stops': [
|
80 |
+
['pre-2024', year2023_color],
|
81 |
+
['2024', year2024_color]
|
82 |
+
]
|
83 |
+
}
|
84 |
+
|
85 |
+
access = {
|
86 |
+
'property': 'access_type',
|
87 |
+
'type': 'categorical',
|
88 |
+
'stops': [
|
89 |
+
['Open Access', public_access_color],
|
90 |
+
['No Public Access', private_access_color],
|
91 |
+
['Unknown Access', "#bbbbbb"],
|
92 |
+
['Restricted Access', tribal_color]
|
93 |
+
]
|
94 |
+
}
|
95 |
+
|
96 |
+
gap = {
|
97 |
+
'property': 'reGAP',
|
98 |
+
'type': 'categorical',
|
99 |
+
'stops': [
|
100 |
+
[1, "#26633d"],
|
101 |
+
[2, "#879647"],
|
102 |
+
[3, "#EE4B2B"],
|
103 |
+
[4, "#BF40BF"]
|
104 |
+
]
|
105 |
+
}
|
106 |
+
|
107 |
+
style_options = {
|
108 |
+
"Year": year,
|
109 |
+
"GAP Status Code": gap,
|
110 |
+
"Manager Type": manager,
|
111 |
+
"Easement": easement,
|
112 |
+
"Access Type": access,
|
113 |
+
}
|
114 |
+
|
115 |
+
justice40_fill = {
|
116 |
+
'property': 'Disadvan',
|
117 |
+
'type': 'categorical',
|
118 |
+
'stops': [
|
119 |
+
[0, white],
|
120 |
+
[1, justice40_color]
|
121 |
+
]
|
122 |
+
}
|
123 |
+
|
124 |
+
justice40_style = {
|
125 |
+
"version": 8,
|
126 |
+
"sources": {
|
127 |
+
"source1": {
|
128 |
+
"type": "vector",
|
129 |
+
"url": "pmtiles://" + url_justice40,
|
130 |
+
"attribution": "Justice40"
|
131 |
+
}
|
132 |
+
},
|
133 |
+
"layers": [
|
134 |
+
{
|
135 |
+
"id": "layer1",
|
136 |
+
"source": "source1",
|
137 |
+
"source-layer": "DisadvantagedCommunitiesCEJST",
|
138 |
+
"filter": ["match", ["get", "StateName"], "California", True, False],
|
139 |
+
"type": "fill",
|
140 |
+
"paint": {
|
141 |
+
"fill-color": justice40_fill,
|
142 |
+
}
|
143 |
+
}
|
144 |
+
]
|
145 |
+
}
|
146 |
+
|
147 |
+
select_column = {
|
148 |
+
"Year": "established",
|
149 |
+
"GAP Status Code": "reGAP",
|
150 |
+
"Manager Type": "manager_type",
|
151 |
+
"Easement": "easement",
|
152 |
+
"Access Type": "access_type",
|
153 |
+
}
|
154 |
+
|