Spaces:
Running
Running
File size: 6,977 Bytes
ed27e2b c2a1e5b abb3582 e0df861 b15dfab abb3582 e0df861 abb3582 e0df861 abb3582 b15dfab c2a1e5b e0df861 98b6564 1367bbc c2a1e5b 92a8f8c b761c8c 98b6564 e6fc859 e0df861 e6fc859 98b6564 e0df861 98b6564 179db2b 98b6564 92a8f8c 98b6564 2b73487 92a8f8c b15dfab 92a8f8c b15dfab 92a8f8c b15dfab 92a8f8c b15dfab 92a8f8c e6fc859 e0df861 e6fc859 2b73487 1367bbc 98b6564 0dde66d 98b6564 c91fb35 2b73487 92a8f8c 98b6564 2b73487 92a8f8c abb3582 2b73487 e0df861 ed27e2b 92a8f8c abb3582 1367bbc c2a1e5b e0df861 0dde66d abb3582 c2a1e5b b15dfab 2b73487 60f152e 2b73487 92a8f8c 2b73487 e0df861 b15dfab e0df861 2b73487 abb3582 e0df861 179db2b e0df861 abb3582 e0df861 abb3582 e0df861 60f152e 179db2b e0df861 0dde66d 2b73487 abb3582 2b73487 1367bbc abb3582 1367bbc 92a8f8c 1367bbc 2b73487 1367bbc 92a8f8c 1367bbc abb3582 1367bbc 0dde66d 1367bbc 0dde66d 1367bbc 2b73487 1367bbc ed27e2b 1367bbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
library(shiny)
library(bslib)
library(htmltools)
#library(markdown)
library(fontawesome)
library(bsicons)
library(gt)
library(glue)
library(ggplot2)
library(readr)
library(dplyr)
library(mapgl)
library(duckdbfs)
duckdbfs::load_spatial()
css <-
HTML(paste0("<link rel='stylesheet' type='text/css' ",
"href='https://demos.creative-tim.com/",
"material-dashboard/assets/css/",
"material-dashboard.min.css?v=3.2.0'>"))
# Define the UI
ui <- page_sidebar(
fillable = FALSE, # do not squeeze to vertical screen space
tags$head(css),
titlePanel("Demo App"),
"
This is a proof-of-principle for a simple chat-driven interface
to dynamically explore geospatial data.
",
card(
layout_columns(
textInput("chat",
label = NULL,
"Which counties in California have the highest average social vulnerability?",
width = "100%"),
div(
actionButton("user_msg", "", icon = icon("paper-plane"),
class = "btn-primary btn-sm align-bottom"),
class = "align-text-bottom"),
col_widths = c(11, 1)),
fill = FALSE
),
textOutput("agent"),
layout_columns(
card(maplibreOutput("map")),
card(includeMarkdown("## Plot"),
plotOutput("chart1"),
plotOutput("chart2"),
),
col_widths = c(8, 4),
row_heights = c("600px"),
max_height = "700px"
),
gt_output("table"),
card(fill = TRUE,
card_header(fa("robot")),
accordion(
open = FALSE,
accordion_panel(
title = "show sql",
icon = fa("terminal"),
verbatimTextOutput("sql_code"),
),
accordion_panel(
title = "explain",
icon = fa("user", prefer_type="solid"),
textOutput("explanation"),
)
),
card(
card_header("Errata"),
shiny::markdown(readr::read_file("footer.md")),
)
),
sidebar = sidebar(
input_switch("redlines", "Redlined Areas", value = FALSE),
input_switch("svi", "Social Vulnerability", value = TRUE),
input_switch("richness", "Biodiversity Richness", value = FALSE),
input_switch("rsr", "Biodiversity Range Size Rarity", value = FALSE),
card(
card_header(bs_icon("github"), "Source code:"),
a(href = "https://github.com/boettiger-lab/geo-llm-r",
"https://github.com/boettiger-lab/geo-llm-r"))
),
theme = bs_theme(version = "5")
)
repo <- "https://data.source.coop/cboettig/social-vulnerability"
pmtiles <- glue("{repo}/svi2020_us_tract.pmtiles")
parquet <- glue("{repo}/svi2020_us_tract.parquet")
con <- duckdbfs::cached_connection()
svi <- open_dataset(parquet, tblname = "svi") |> filter(RPL_THEMES > 0)
schema <- read_file("schema.yml")
system_prompt <- glue::glue(readr::read_file("system-prompt.md"),
.open = "<", .close = ">")
chat <- ellmer::chat_vllm(
base_url = "https://llm.nrp-nautilus.io/",
model = "llama3",
api_key = Sys.getenv("NRP_API_KEY"),
system_prompt = system_prompt,
api_args = list(temperature = 0)
)
# helper utilities
# faster/more scalable to pass maplibre the ids to refilter pmtiles,
# than to pass it the full geospatial/sf object
filter_column <- function(full_data, filtered_data, id_col = "FIPS") {
if (nrow(filtered_data) < 1) return(NULL)
values <- full_data |>
inner_join(filtered_data, copy = TRUE) |>
pull(id_col)
# maplibre syntax for the filter of PMTiles
list("in", list("get", id_col), list("literal", values))
}
# Define the server
server <- function(input, output, session) {
chart1_data <- svi |>
group_by(COUNTY) |>
summarise(mean_svi = mean(RPL_THEMES)) |>
collect()
chart1 <- chart1_data |>
ggplot(aes(mean_svi)) + geom_density(fill="darkred") +
ggtitle("County-level vulnerability nation-wide")
data <- reactiveValues(df = tibble())
output$chart1 <- renderPlot(chart1)
observeEvent(input$user_msg, {
stream <- chat$chat(input$chat)
# Parse response
response <- jsonlite::fromJSON(stream)
if ("query" %in% names(response)) {
output$sql_code <- renderText(stringr::str_wrap(response$query, width = 60))
output$explanation <- renderText(response$explanation)
# Actually execute the SQL query generated:
df <- DBI::dbGetQuery(con, response$query)
# don't display shape column in render
df <- df |> select(-any_of("Shape"))
output$table <- render_gt(df, height = 300)
y_axis <- colnames(df)[!colnames(df) %in% colnames(svi)]
chart2 <- df |>
rename(social_vulnerability = y_axis) |>
ggplot(aes(social_vulnerability)) +
geom_density(fill = "darkred") +
xlim(c(0, 1)) +
ggtitle("Vulnerability of selected areas")
output$chart2 <- renderPlot(chart2)
# We need to somehow trigger this df to update the map.
data$df <- df
# Note: ellmer will preserve full chat history automatically.
# this can confuse the agent and mess up behavior, so we reset:
chat$set_turns(NULL)
} else {
output$agent <- renderText(response$agent)
}
})
output$map <- renderMaplibre({
m <- maplibre(center = c(-92.9, 41.3), zoom = 3, height = "400")
if (input$redlines) {
m <- m |>
add_fill_layer(
id = "redlines",
source = list(type = "vector",
url = paste0("pmtiles://", "https://data.source.coop/cboettig/us-boundaries/mappinginequality.pmtiles")),
source_layer = "mappinginequality",
fill_color = list("get", "fill")
)
}
if (input$richness) {
m <- m |>
add_raster_source(id = "richness",
tiles = "https://data.source.coop/cboettig/mobi/tiles/red/species-richness-all/{z}/{x}/{y}.png",
maxzoom = 11
) |>
add_raster_layer(id = "richness-layer",
source = "richness")
}
if (input$rsr) {
m <- m |>
add_raster_source(id = "rsr",
tiles = "https://data.source.coop/cboettig/mobi/tiles/green/range-size-rarity-all/{z}/{x}/{y}.png",
maxzoom = 11
) |>
add_raster_layer(id = "richness-layer",
source = "rsr")
}
if (input$svi) {
m <- m |>
add_fill_layer(
id = "svi_layer",
source = list(type = "vector",
url = paste0("pmtiles://", pmtiles)),
source_layer = "SVI2000_US_tract",
filter = filter_column(svi, data$df, "FIPS"),
fill_opacity = 0.5,
fill_color = interpolate(column = "RPL_THEMES",
values = c(0, 1),
stops = c("lightpink", "darkred"),
na_color = "lightgrey")
)
}
m})
}
# Run the app
shinyApp(ui = ui, server = server) |