Spaces:
Sleeping
Sleeping
refactor
Browse files- preprocess.py +59 -56
preprocess.py
CHANGED
@@ -1,63 +1,72 @@
|
|
1 |
-
# +
|
2 |
import ibis
|
3 |
import ibis.selectors as s
|
4 |
from ibis import _
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
|
10 |
# +
|
|
|
11 |
fgb = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.fgb"
|
12 |
parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
|
13 |
-
# "
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
pad = con.table("pad")
|
19 |
|
20 |
# or read the fgb version, much slower
|
21 |
# pad = con.read_geo(fgb)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# pad.filter(_.Category == "Easement").select("EsmtHldr", "Mang_Name", "Unit_Nm").distinct().sample(.1).to_pandas()
|
27 |
-
#pad.select("Comments").distinct().head(100).to_pandas()
|
28 |
# -
|
29 |
|
30 |
-
|
|
|
|
|
31 |
meta = fiona.open(fgb)
|
32 |
crs = meta.crs
|
33 |
|
34 |
# +
|
35 |
## optional getting bounds
|
36 |
-
|
37 |
-
import rioxarray
|
38 |
-
from shapely.geometry import box
|
39 |
-
|
40 |
cog = "https://data.source.coop/cboettig/mobi/species-richness-all/SpeciesRichness_All.tif"
|
41 |
|
42 |
-
# fiona is not built with parquet support. ideally duckdb's st_read_meta would do this.
|
43 |
-
|
44 |
-
nrow = len(meta)
|
45 |
-
|
46 |
# extract bounds. (in this case these are already in the same projection actually so r.rio.bounds() would work)
|
47 |
r = rioxarray.open_rasterio(cog)
|
48 |
bounds = box(*r.rio.transform_bounds(crs))
|
49 |
|
50 |
# +
|
51 |
# Now we can do all the usual SQL queries to subset the data. Note the `geom.within()` spatial filter!
|
52 |
-
focal_columns = ["
|
53 |
"Mang_Type", "Des_Tp", "Pub_Access",
|
54 |
"GAP_Sts", "IUCN_Cat", "Unit_Nm",
|
55 |
"State_Nm", "EsmtHldr", "Date_Est",
|
56 |
"SHAPE_Area", "geom"]
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
|
|
59 |
# Add our custom bucket categories:
|
60 |
# really could be done seperately.
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
case = (
|
62 |
ibis.case()
|
63 |
.when( (_.Mang_Type.isin(public) & _.GAP_Sts.isin(["1","2"])), "public conservation")
|
@@ -68,35 +77,29 @@ case = (
|
|
68 |
.when( (_.Mang_Type == "TRIB"), "tribal")
|
69 |
.end()
|
70 |
)
|
71 |
-
|
72 |
-
pad_parquet = (
|
73 |
pad
|
|
|
74 |
.filter((_.FeatClass.isin(["Easement", "Fee"])) | (
|
75 |
(_.FeatClass == "Proclamation") & (_.Mang_Name == "TRIB"))
|
76 |
)
|
77 |
-
# .filter(_.Mang_Type.notin(["UNK", "TERR"]))
|
78 |
-
# .filter(_.geom.within(bounds))
|
79 |
-
.mutate(GAP_Sts = _.GAP_Sts) # do not cast to integer!
|
80 |
.mutate(bucket = case)
|
81 |
-
.
|
82 |
-
.select(focal_columns)
|
83 |
-
.rename(geometry="geom")
|
84 |
)
|
85 |
|
86 |
-
|
87 |
# -
|
88 |
|
89 |
-
agency_name = con.read_parquet("
|
90 |
-
agency_type = con.read_parquet("
|
91 |
-
desig_type = con.read_parquet("
|
92 |
-
public_access = con.read_parquet("
|
93 |
-
state_name = con.read_parquet("
|
94 |
-
iucn = con.read_parquet("
|
95 |
|
96 |
-
|
97 |
.rename(manager_name_id = "Mang_Name",
|
98 |
manager_type_id = "Mang_Type",
|
99 |
-
manager_group="bucket",
|
100 |
designation_type_id = "Des_Tp",
|
101 |
public_access_id = "Pub_Access",
|
102 |
category = "FeatClass",
|
@@ -114,18 +117,14 @@ pad_processed = (pad_parquet
|
|
114 |
.left_join(state_name, "state")
|
115 |
.left_join(iucn, "iucn_code")
|
116 |
.select(~s.contains("_right"))
|
117 |
-
|
118 |
-
)
|
119 |
-
# pad_processed.to_parquet("pad-processed.parquet")
|
120 |
-
|
121 |
-
# +
|
122 |
# if we keep the original geoparquet WKB 'geometry' column, to_pandas() (or execute) gives us only a normal pandas data.frame, and geopandas doesn't see the metadata.
|
123 |
# if we replace the geometry with duckdb-native 'geometry' type, to_pandas() gives us a geopanadas! But requires reading into RAM.
|
124 |
-
|
|
|
|
|
|
|
125 |
|
126 |
-
gdf = pad_processed.to_pandas()
|
127 |
-
gdf = gdf.set_crs(crs)
|
128 |
-
gdf.to_parquet("pad-processed.parquet")
|
129 |
|
130 |
# +
|
131 |
import rasterio
|
@@ -141,7 +140,8 @@ def big_zonal_stats(vec_file, tif_file, stats, col_name, n_jobs, verbose = 10, t
|
|
141 |
raster_profile = src.profile
|
142 |
gdf = gpd.read_parquet(vec_file).to_crs(raster_profile['crs'])
|
143 |
|
144 |
-
|
|
|
145 |
|
146 |
# lamba fn to zonal_stats a slice:
|
147 |
def get_stats(geom_slice, tif_file, stats):
|
@@ -275,10 +275,13 @@ df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "all_spec
|
|
275 |
# +
|
276 |
columns = '''
|
277 |
area_name,
|
278 |
-
manager_name,
|
279 |
-
|
|
|
|
|
280 |
manager_group,
|
281 |
designation_type,
|
|
|
282 |
public_access,
|
283 |
category,
|
284 |
iucn_code,
|
|
|
|
|
1 |
import ibis
|
2 |
import ibis.selectors as s
|
3 |
from ibis import _
|
4 |
+
import fiona
|
5 |
+
import geopandas as gpd
|
6 |
+
import rioxarray
|
7 |
+
from shapely.geometry import box
|
8 |
|
9 |
# +
|
10 |
+
|
11 |
fgb = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.fgb"
|
12 |
parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
|
13 |
+
# gdb = "https://data.source.coop/cboettig/pad-us-3/PADUS3/PAD_US3_0.gdb" # original, all tables
|
14 |
|
15 |
+
con = ibis.duckdb.connect()
|
16 |
+
con.load_extension("spatial")
|
17 |
+
threads = 24
|
|
|
18 |
|
19 |
# or read the fgb version, much slower
|
20 |
# pad = con.read_geo(fgb)
|
21 |
+
# pad = con.read_parquet(parquet)
|
22 |
+
# Currently ibis doesn't detect that this is GeoParquet. We need a SQL escape-hatch to cast the geometry
|
23 |
+
con.raw_sql(f"CREATE OR REPLACE VIEW pad AS SELECT *, st_geomfromwkb(geometry) as geom from read_parquet('{parquet}')")
|
24 |
+
pad = con.table("pad")
|
|
|
|
|
25 |
# -
|
26 |
|
27 |
+
|
28 |
+
# Get the CRS
|
29 |
+
# fiona is not built with parquet support, must read this from fgb. ideally duckdb's st_read_meta would do this from the parquet
|
30 |
meta = fiona.open(fgb)
|
31 |
crs = meta.crs
|
32 |
|
33 |
# +
|
34 |
## optional getting bounds
|
|
|
|
|
|
|
|
|
35 |
cog = "https://data.source.coop/cboettig/mobi/species-richness-all/SpeciesRichness_All.tif"
|
36 |
|
|
|
|
|
|
|
|
|
37 |
# extract bounds. (in this case these are already in the same projection actually so r.rio.bounds() would work)
|
38 |
r = rioxarray.open_rasterio(cog)
|
39 |
bounds = box(*r.rio.transform_bounds(crs))
|
40 |
|
41 |
# +
|
42 |
# Now we can do all the usual SQL queries to subset the data. Note the `geom.within()` spatial filter!
|
43 |
+
focal_columns = ["row_n", "FeatClass", "Mang_Name",
|
44 |
"Mang_Type", "Des_Tp", "Pub_Access",
|
45 |
"GAP_Sts", "IUCN_Cat", "Unit_Nm",
|
46 |
"State_Nm", "EsmtHldr", "Date_Est",
|
47 |
"SHAPE_Area", "geom"]
|
48 |
+
pad_parquet = (
|
49 |
+
pad
|
50 |
+
.mutate(row_n=ibis.row_number())
|
51 |
+
.filter((_.FeatClass.isin(["Easement", "Fee"])) | (
|
52 |
+
(_.FeatClass == "Proclamation") & (_.Mang_Name == "TRIB"))
|
53 |
+
)
|
54 |
+
.filter(_.geom.within(bounds))
|
55 |
+
.select(focal_columns)
|
56 |
+
.rename(geometry="geom")
|
57 |
+
)
|
58 |
+
|
59 |
+
pad_parquet.to_parquet("pad-processed.parquet")
|
60 |
|
61 |
+
# +
|
62 |
# Add our custom bucket categories:
|
63 |
# really could be done seperately.
|
64 |
+
categorical_columns = ["bucket", "FeatClass", "Mang_Name",
|
65 |
+
"Mang_Type", "Des_Tp", "Pub_Access",
|
66 |
+
"GAP_Sts", "IUCN_Cat", "Unit_Nm",
|
67 |
+
"State_Nm", "EsmtHldr", "Date_Est",
|
68 |
+
"row_n"]
|
69 |
+
public = ["DIST", "LOC", "FED", "STAT", "JNT"]
|
70 |
case = (
|
71 |
ibis.case()
|
72 |
.when( (_.Mang_Type.isin(public) & _.GAP_Sts.isin(["1","2"])), "public conservation")
|
|
|
77 |
.when( (_.Mang_Type == "TRIB"), "tribal")
|
78 |
.end()
|
79 |
)
|
80 |
+
pad_grouping = (
|
|
|
81 |
pad
|
82 |
+
.mutate(row_n=ibis.row_number())
|
83 |
.filter((_.FeatClass.isin(["Easement", "Fee"])) | (
|
84 |
(_.FeatClass == "Proclamation") & (_.Mang_Name == "TRIB"))
|
85 |
)
|
|
|
|
|
|
|
86 |
.mutate(bucket = case)
|
87 |
+
.select(categorical_columns)
|
|
|
|
|
88 |
)
|
89 |
|
90 |
+
pad_grouping.to_parquet("pad-groupings.parquet")
|
91 |
# -
|
92 |
|
93 |
+
agency_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-name.parquet").select(manager_name_id = "Code", manager_name = "Dom")
|
94 |
+
agency_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-type.parquet").select(manager_type_id = "Code", manager_type = "Dom")
|
95 |
+
desig_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-desgination-type.parquet").select(designation_type_id = "Code", designation_type = "Dom")
|
96 |
+
public_access = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-public-access.parquet").select(public_access_id = "Code", public_access = "Dom")
|
97 |
+
state_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-state-name.parquet").select(state = "Code", state_name = "Dom")
|
98 |
+
iucn = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-iucn.parquet").select(iucn_code = "CODE", iucn_category = "DOM")
|
99 |
|
100 |
+
(pad_parquet
|
101 |
.rename(manager_name_id = "Mang_Name",
|
102 |
manager_type_id = "Mang_Type",
|
|
|
103 |
designation_type_id = "Des_Tp",
|
104 |
public_access_id = "Pub_Access",
|
105 |
category = "FeatClass",
|
|
|
117 |
.left_join(state_name, "state")
|
118 |
.left_join(iucn, "iucn_code")
|
119 |
.select(~s.contains("_right"))
|
120 |
+
# .select(~s.contains("_id"))
|
|
|
|
|
|
|
|
|
121 |
# if we keep the original geoparquet WKB 'geometry' column, to_pandas() (or execute) gives us only a normal pandas data.frame, and geopandas doesn't see the metadata.
|
122 |
# if we replace the geometry with duckdb-native 'geometry' type, to_pandas() gives us a geopanadas! But requires reading into RAM.
|
123 |
+
.to_pandas()
|
124 |
+
.set_crs(crs)
|
125 |
+
.to_parquet("pad-processed.parquet")
|
126 |
+
)
|
127 |
|
|
|
|
|
|
|
128 |
|
129 |
# +
|
130 |
import rasterio
|
|
|
140 |
raster_profile = src.profile
|
141 |
gdf = gpd.read_parquet(vec_file).to_crs(raster_profile['crs'])
|
142 |
|
143 |
+
# row_n is a global id, may refer to excluded polygons
|
144 |
+
# gdf["row_id"] = gdf.index + 1
|
145 |
|
146 |
# lamba fn to zonal_stats a slice:
|
147 |
def get_stats(geom_slice, tif_file, stats):
|
|
|
275 |
# +
|
276 |
columns = '''
|
277 |
area_name,
|
278 |
+
manager_name,
|
279 |
+
manager_name_id,
|
280 |
+
manager_type,
|
281 |
+
manager_type_id,
|
282 |
manager_group,
|
283 |
designation_type,
|
284 |
+
designation_type_id,
|
285 |
public_access,
|
286 |
category,
|
287 |
iucn_code,
|