Spaces:
Sleeping
Sleeping
File size: 20,615 Bytes
dd06071 56784d5 dd06071 593d846 5dc4444 593d846 5dc4444 593d846 dd06071 5dc4444 593d846 dd06071 3fac395 e1041f5 dd06071 5dc4444 dd06071 5dc4444 593d846 5dc4444 dd06071 593d846 dd06071 593d846 dd06071 593d846 dd06071 593d846 dd06071 593d846 5dc4444 593d846 5dc4444 593d846 56784d5 593d846 5dc4444 593d846 56784d5 5dc4444 593d846 56784d5 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 dd06071 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 593d846 5dc4444 e999258 5dc4444 dd06071 593d846 dd06071 593d846 dd06071 593d846 5dc4444 593d846 dd06071 593d846 dd06071 593d846 dd06071 593d846 dd06071 593d846 dd06071 e1041f5 dd06071 593d846 dd06071 5dc4444 dd06071 593d846 dd06071 e1041f5 593d846 dd06071 e1041f5 593d846 dd06071 e1041f5 3fac395 593d846 e1041f5 593d846 dd06071 593d846 56784d5 593d846 56784d5 593d846 56784d5 593d846 dd06071 56784d5 593d846 56784d5 dd06071 593d846 dd06071 56784d5 dd06071 e1041f5 dd06071 e1041f5 dd06071 e1041f5 dd06071 593d846 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import streamlit as st
import streamlit.components.v1 as components
import base64
import leafmap.maplibregl as leafmap
import altair as alt
import ibis
from ibis import _
import ibis.selectors as s
import os
import pandas as pd
import geopandas as gpd
from shapely import wkb
import sqlalchemy
import pathlib
from typing import Optional
from functools import reduce
from itertools import chain
from variables import *
def colorTable(select_colors,color_choice,column):
colors = (ibis
.memtable(select_colors[color_choice], columns=[column, "color"])
.to_pandas()
)
return colors
def get_summary(ca, combined_filter, column, main_group, colors=None):
df = ca.filter(combined_filter)
#total acres for each group
# if colors is not None and not colors.empty:
group_totals = df.group_by(main_group).aggregate(total_acres=_.acres.sum())
df = ca.filter(combined_filter)
df = (df
.group_by(*column) # unpack the list for grouping
.aggregate(percent_CA= _.acres.sum() / ca_area_acres,
acres = _.acres.sum(),
mean_richness = (_.richness * _.acres).sum() / _.acres.sum(),
mean_rsr = (_.rsr * _.acres).sum() / _.acres.sum(),
mean_irrecoverable_carbon = (_.irrecoverable_carbon * _.acres).sum() / _.acres.sum(),
mean_manageable_carbon = (_.manageable_carbon * _.acres).sum() / _.acres.sum(),
mean_fire = (_.fire *_.acres).sum()/_.acres.sum(),
mean_rxburn = (_.rxburn *_.acres).sum()/_.acres.sum(),
mean_disadvantaged = (_.disadvantaged_communities * _.acres).sum() / _.acres.sum(),
mean_svi = (_.svi * _.acres).sum() / _.acres.sum(),
)
.mutate(percent_CA=_.percent_CA.round(3),
acres=_.acres.round(0))
)
# if colors is not None and not colors.empty:
df = df.inner_join(group_totals, main_group)
df = df.mutate(percent_group=( _.acres / _.total_acres).round(3))
if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it.
df = df.inner_join(colors, column[-1])
df = df.cast({col: "string" for col in column})
df = df.to_pandas()
return df
def summary_table(ca, column, select_colors, color_choice, filter_cols, filter_vals,colorby_vals): # get df for charts + df_tab for printed table
colors = colorTable(select_colors,color_choice,column)
filters = []
if filter_cols and filter_vals: #if a filter is selected, add to list of filters
for filter_col, filter_val in zip(filter_cols, filter_vals):
if len(filter_val) > 1:
filters.append(getattr(_, filter_col).isin(filter_val))
else:
filters.append(getattr(_, filter_col) == filter_val[0])
if column not in filter_cols: #show color_by column in table by adding it as a filter (if it's not already a filter)
filter_cols.append(column)
filters.append(getattr(_, column).isin(colorby_vals[column]))
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
only_conserved = (combined_filter) & (_.status.isin(['30x30-conserved']))
df_percent = get_summary(ca, only_conserved, [column],column, colors) # df used for percentage, excludes non-conserved.
df_tab = get_summary(ca, combined_filter, filter_cols, column, colors = None) #df used for printed table
if "non-conserved" in list(chain.from_iterable(filter_vals)):
combined_filter = (combined_filter) | (_.status.isin(['non-conserved']))
df = get_summary(ca, combined_filter, [column], column, colors) # df used for charts
df_bar_30x30 = None # no stacked charts if we have status/gap_code
if column not in ["status","gap_code"]: # df for stacked 30x30 status bar chart
colors = colorTable(select_colors,"30x30 Status",'status')
df_bar_30x30 = get_summary(ca, combined_filter, [column, 'status'], column, colors) # df used for charts
return df, df_tab, df_percent, df_bar_30x30
def summary_table_sql(ca, column, colors, ids): # get df for charts + df_tab for printed table
filters = [_.id.isin(ids)]
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
df = get_summary(ca, combined_filter, [column], column, colors) # df used for charts
return df
def get_hex(df, color,sort_order):
return list(df.drop_duplicates(subset=color, keep="first")
.set_index(color)
.reindex(sort_order)
.dropna()["color"])
def transform_label(label, x_field):
# converting labels for that gnarly stacked bar chart
if x_field == "access_type":
return label.replace(" Access", "")
elif x_field == "ecoregion":
label = label.replace("Northern California", "NorCal")
label = label.replace("Southern California", "SoCal")
label = label.replace("Southeastern", "SE.")
label = label.replace("Northwestern", "NW.")
label = label.replace("and", "&")
label = label.replace("California", "CA")
return label
else:
return label
def stacked_bar(df, x, y, color, title, colors):
label_colors = colors['color'].to_list()
# bar order
if x == "established": # order labels in chronological order, not alphabetic.
sort = '-x'
elif x == "access_type": # order based on levels of openness
sort = ['Open', 'Restricted', 'No Public', "Unknown"]
elif x == "easement":
sort = ['True', 'False']
elif x == "manager_type":
sort = ["Federal", "Tribal", "State", "Special District", "County", "City", "HOA",
"Joint", "Non Profit", "Private", "Unknown"]
elif x == "status":
sort = ["30x30-conserved", "other-conserved", "unknown", "non-conserved"]
elif x == "ecoregion":
sort = ['SE. Great Basin', 'Mojave Desert', 'Sonoran Desert', 'Sierra Nevada',
'SoCal Mountains & Valleys', 'Mono', 'Central CA Coast', 'Klamath Mountains',
'NorCal Coast', 'NorCal Coast Ranges', 'NW. Basin & Range', 'Colorado Desert',
'Central Valley Coast Ranges', 'SoCal Coast', 'Sierra Nevada Foothills',
'Southern Cascades', 'Modoc Plateau', 'Great Valley (North)',
'NorCal Interior Coast Ranges', 'Great Valley (South)']
else:
sort = 'x'
if x == "manager_type":
angle = 270
height = 350
elif x == 'ecoregion':
angle = 270
height = 430
else:
angle = 0
height = 310
# stacked bar order
sort_order = ['30x30-conserved', 'other-conserved', 'unknown', 'non-conserved']
y_titles = {
'ecoregion': 'Ecoregion (%)',
'established': 'Year (%)',
'manager_type': 'Manager Type (%)',
'easement': 'Easement (%)',
'access_type': 'Access (%)'
}
ytitle = y_titles.get(x, y)
color_hex = get_hex(df[[color, 'color']], color, sort_order)
sort_order = sort_order[0:len(color_hex)]
df["stack_order"] = df[color].apply(lambda val: sort_order.index(val) if val in sort_order else len(sort_order))
# shorten labels to fit on chart
label_transform = f"datum.{x}"
if x == "access_type":
label_transform = f"replace(datum.{x}, ' Access', '')"
elif x == "ecoregion":
label_transform = (
"replace("
"replace("
"replace("
"replace("
"replace("
"replace(datum.ecoregion, 'Northern California', 'NorCal'),"
"'Southern California', 'SoCal'),"
"'Southeastern', 'SE.'),"
"'Northwestern', 'NW.'),"
"'and', '&'),"
"'California', 'CA')"
)
# to match the colors in the map to each label, need to write some ugly code..
# bar chart w/ xlabels hidden
chart = alt.Chart(df).mark_bar(height = 500).transform_calculate(
xlabel=label_transform
).encode(
x=alt.X("xlabel:N", sort=sort, title=None,
axis=alt.Axis(labelLimit=150, labelAngle=angle, labelColor="transparent")),
y=alt.Y(y, title=ytitle, axis=alt.Axis(labelPadding=5)).scale(domain=(0, 1)),
color=alt.Color(
color,
sort=sort_order,
scale=alt.Scale(domain=sort_order, range=color_hex)
),
order=alt.Order("stack_order:Q", sort="ascending"),
tooltip=[
alt.Tooltip(x, type="nominal"),
alt.Tooltip(color, type="nominal"),
alt.Tooltip("percent_group", type="quantitative", format=",.1%"),
alt.Tooltip("acres", type="quantitative", format=",.0f"),
]
)
transformed_labels = [transform_label(str(lab), x) for lab in colors[x]]
labels_df = colors
labels_df['xlabel'] = transformed_labels
# 2 layers, 1 for the symbol and 1 for the text
if angle == 0:
symbol_layer = alt.Chart(labels_df).mark_point(
filled=True,
shape="circle",
size=100,
xOffset = 0,
yOffset=130,
align = 'left',
tooltip = False
).encode(
x=alt.X("xlabel:N", sort=sort),
color=alt.Color("color:N", scale=None)
)
text_layer = alt.Chart(labels_df).mark_text(
dy=115, # shifts the text to the right of the symbol
dx = 0,
yOffset=0,
xOffset = 0,
align='center',
color="black",
tooltip = False
).encode(
x=alt.X("xlabel:N", sort=sort),
text=alt.Text("xlabel:N")
)
# vertical labels
elif angle == 270:
symbol_layer = alt.Chart(labels_df).mark_point(
xOffset = 0,
yOffset= 100,
filled=True,
shape="circle",
size=100,
tooltip = False
).encode(
x=alt.X("xlabel:N", sort=sort),
color=alt.Color("color:N", scale=None)
)
text_layer = alt.Chart(labels_df).mark_text(
dy=0,
dx = -110,
angle=270,
align='right',
color="black",
tooltip = False
).encode(
x=alt.X("xlabel:N", sort=sort),
text=alt.Text("xlabel:N")
)
custom_labels = alt.layer(symbol_layer, text_layer)
final_chart = alt.layer(chart, custom_labels)
# put it all together
final_chart = final_chart.properties(
width="container",
height=height,
title=title
).configure_legend(
direction='horizontal',
orient='top',
columns=2,
title=None,
labelOffset=2,
offset=10,
symbolType = 'square'
).configure_title(
fontSize=18, align="center", anchor='middle', offset=10
)
return final_chart
def area_plot(df, column): # Percent protected pie chart
base = alt.Chart(df).encode(
alt.Theta("percent_CA:Q").stack(True),
)
pie = (
base
.mark_arc(innerRadius=40, outerRadius=100, stroke="black", strokeWidth=0.5)
.encode(
alt.Color("color:N").scale(None).legend(None),
tooltip=[
alt.Tooltip(column, type="nominal"),
alt.Tooltip("percent_CA", type="quantitative", format=",.1%"),
alt.Tooltip("acres", type="quantitative", format=",.0f"),
]
)
)
text = (
base
.mark_text(radius=80, size=14, color="white")
.encode(text=column + ":N")
)
plot = pie # pie + text
return plot.properties(width="container", height=290)
def bar_chart(df, x, y, title): #display summary stats for color_by column
#axis label angles / chart size
if x == "manager_type": #labels are too long, making vertical
angle = 270
height = 373
elif x == 'ecoregion': # make labels vertical and figure taller
angle = 270
height = 430
else: #other labels are horizontal
angle = 0
height = 310
# order of bars
sort = 'x'
lineBreak = ''
if x == "established": # order labels in chronological order, not alphabetic.
sort = '-x'
elif x == "access_type": #order based on levels of openness
sort=['Open', 'Restricted', 'No Public', "Unknown"]
elif x == "easement":
sort=['True','False']
elif x == "manager_type":
sort = ["Federal","Tribal","State","Special District", "County", "City", "HOA","Joint","Non Profit","Private","Unknown"]
elif x == "ecoregion":
sort = ['SE. Great Basin','Mojave Desert','Sonoran Desert','Sierra Nevada','SoCal Mountains & Valleys','Mono',
'Central CA Coast','Klamath Mountains','NorCal Coast','NorCal Coast Ranges',
'NW. Basin & Range','Colorado Desert','Central Valley Coast Ranges','SoCal Coast',
'Sierra Nevada Foothills','Southern Cascades','Modoc Plateau','Great Valley (North)','NorCal Interior Coast Ranges',
'Great Valley (South)']
elif x == "status":
sort = ["30x30-conserved","other-conserved","unknown","non-conserved"]
lineBreak = '-'
# modify label names in bar chart to fit in frame
label_transform = f"datum.{x}" # default; no change
if x == "access_type":
label_transform = f"replace(datum.{x}, ' Access', '')" #omit 'access' from access_type
elif x == "ecoregion":
label_transform = (
"replace("
"replace("
"replace("
"replace("
"replace("
"replace(datum.ecoregion, 'Northern California', 'NorCal'),"
"'Southern California', 'SoCal'),"
"'Southeastern', 'SE.'),"
"'Northwestern', 'NW.'),"
"'and', '&'),"
"'California', 'CA')"
)
y_titles = {
'mean_richness': 'Richness (Mean)',
'mean_rsr': 'Range-Size Rarity (Mean)',
'mean_irrecoverable_carbon': 'Irrecoverable Carbon (Mean)',
'mean_manageable_carbon': 'Manageable Carbon (Mean)',
'mean_disadvantaged': 'Disadvantaged (Mean)',
'mean_svi': 'SVI (Mean)',
'mean_fire': 'Fire (Mean)',
'mean_rxburn': 'Rx Fire (Mean)'
}
ytitle = y_titles.get(y, y) # Default to `y` if not in the dictionary
x_title = next(key for key, value in select_column.items() if value == x)
chart = alt.Chart(df).mark_bar(stroke = 'black', strokeWidth = .5).transform_calculate(
label=label_transform
).encode(
x=alt.X("label:N",
axis=alt.Axis(labelAngle=angle, title=x_title, labelLimit = 200),
sort=sort),
y=alt.Y(y, axis=alt.Axis(title = ytitle)),
color=alt.Color('color').scale(None),
).configure(lineBreak = lineBreak)
chart = chart.properties(width="container", height=height, title = title
).configure_title(fontSize=18, align = "center",anchor='middle')
return chart
def sync_checkboxes(source):
# gap 1 and gap 2 on -> 30x30-conserved on
if source in ["gap_code1", "gap_code2"]:
st.session_state['status30x30-conserved'] = st.session_state.gap_code1 and st.session_state.gap_code2
# 30x30-conserved on -> gap 1 and gap 2 on
elif source == "status30x30-conserved":
st.session_state.gap_code1 = st.session_state['status30x30-conserved']
st.session_state.gap_code2 = st.session_state['status30x30-conserved']
# other-conserved on <-> gap 3 on
elif source == "gap_code3":
st.session_state["statusother-conserved"] = st.session_state.gap_code3
elif source == "statusother-conserved":
if "gap_code3" in st.session_state and st.session_state["statusother-conserved"] != st.session_state.gap_code3:
st.session_state.gap_code3 = st.session_state["statusother-conserved"]
# unknown on <-> gap 4 on
elif source == "gap_code4":
st.session_state.statusunknown = st.session_state.gap_code4
elif source == "statusunknown":
if "gap_code4" in st.session_state and st.session_state.statusunknown != st.session_state.gap_code4:
st.session_state.gap_code4 = st.session_state.statusunknown
# non-conserved on <-> gap 0
elif source == "gap_code0":
st.session_state['statusnon-conserved'] = st.session_state.gap_code0
elif source == "statusnon-conserved":
if "gap_code0" in st.session_state and st.session_state['statusnon-conserved'] != st.session_state.gap_code0:
st.session_state.gap_code0 = st.session_state['statusnon-conserved']
def getButtons(style_options, style_choice, default_boxes=None):
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
default_boxes = default_boxes or {}
buttons = {}
for name in opts:
key = column + str(name)
buttons[name] = st.checkbox(f"{name}", value=st.session_state[key], key=key, on_change = sync_checkboxes, args = (key,))
filter_choice = [key for key, value in buttons.items() if value]
return {column: filter_choice}
def getColorVals(style_options, style_choice):
#df_tab only includes filters selected, we need to manually add "color_by" column (if it's not already a filter).
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
d = {}
d[column] = opts
return d
def getLegend(style_options, color_choice):
legend = {cat: color for cat, color in style_options[color_choice]['stops']}
position = 'bottom-left'
fontsize = 15
bg_color = 'white'
# shorten legend for ecoregions
if color_choice == "Ecoregion":
legend = {key.replace("Northern California", "NorCal"): value for key, value in legend.items()}
legend = {key.replace("Southern California", "SoCal"): value for key, value in legend.items()}
legend = {key.replace("Southeastern", "SE."): value for key, value in legend.items()}
legend = {key.replace("and", "&"): value for key, value in legend.items()}
legend = {key.replace("California", "CA"): value for key, value in legend.items()}
legend = {key.replace("Northwestern", "NW."): value for key, value in legend.items()}
bg_color = 'rgba(255, 255, 255, 0.6)'
fontsize = 12
return legend, position, bg_color, fontsize
def get_pmtiles_style(paint, alpha, filter_cols, filter_vals):
filters = []
for col, val in zip(filter_cols, filter_vals):
filters.append(["match", ["get", col], val, True, False])
combined_filters = ["all"] + filters
if "non-conserved" in list(chain.from_iterable(filter_vals)):
combined_filters = ["any", combined_filters, ["match", ["get", "status"], ["non-conserved"],True, False]]
style = {
"version": 8,
"sources": {
"ca": {
"type": "vector",
"url": "pmtiles://" + ca_pmtiles,
}
},
"layers": [
{
"id": "ca30x30",
"source": "ca",
"source-layer": "ca30x30",
"type": "fill",
"filter": combined_filters,
"paint": {
"fill-color": paint,
"fill-opacity": alpha
}
}
]
}
return style
def get_pmtiles_style_llm(paint, ids):
combined_filters = ["all", ["match", ["get", "id"], ids, True, False]]
style = {
"version": 8,
"sources": {
"ca": {
"type": "vector",
"url": "pmtiles://" + ca_pmtiles,
}
},
"layers": [
{
"id": "ca30x30",
"source": "ca",
"source-layer": "ca30x30",
"type": "fill",
"filter": combined_filters,
"paint": {
"fill-color": paint,
"fill-opacity": 1,
}
}
]
}
return style
|