Spaces:
Sleeping
Sleeping
Commit
·
dd0c7df
1
Parent(s):
2749893
cleaned up clean up scripts!
Browse files- preprocess/preprocess.ipynb +277 -41
- preprocess/preprocess_part2.ipynb +0 -1165
- requirements.txt +9 -9
preprocess/preprocess.ipynb
CHANGED
@@ -5,15 +5,7 @@
|
|
5 |
"id": "4b4adc2a-bf0c-4ace-87be-dbaf90be0125",
|
6 |
"metadata": {},
|
7 |
"source": [
|
8 |
-
"# Pre-processing"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "markdown",
|
13 |
-
"id": "560b7272-134e-41a1-b1ba-67b9a0380ba4",
|
14 |
-
"metadata": {},
|
15 |
-
"source": [
|
16 |
-
"### Setting up"
|
17 |
]
|
18 |
},
|
19 |
{
|
@@ -33,16 +25,32 @@
|
|
33 |
"from ibis import _\n",
|
34 |
"import geopandas as gpd\n",
|
35 |
"import duckdb\n",
|
|
|
36 |
"\n",
|
37 |
-
"conn = ibis.duckdb.connect(
|
38 |
"ca_parquet = \"https://data.source.coop/cboettig/ca30x30/ca_areas.parquet\"\n",
|
39 |
"# or use local copy:\n",
|
40 |
"# ca_parquet = \"../data/ca_areas.parquet\" # CA Nature Data \n",
|
41 |
"\n",
|
|
|
|
|
|
|
42 |
"ca_boundary = \"../data/ca_shape\"\n",
|
43 |
-
"ca_boundary_parquet = \"
|
44 |
-
"ca_nonconserved_parquet = \"
|
45 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
]
|
47 |
},
|
48 |
{
|
@@ -50,7 +58,15 @@
|
|
50 |
"id": "907235f6-48a5-4c55-b779-3bb6839acf2b",
|
51 |
"metadata": {},
|
52 |
"source": [
|
53 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
]
|
55 |
},
|
56 |
{
|
@@ -65,6 +81,15 @@
|
|
65 |
"ca_all.to_parquet(ca_boundary_parquet)"
|
66 |
]
|
67 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
{
|
69 |
"cell_type": "code",
|
70 |
"execution_count": null,
|
@@ -74,7 +99,7 @@
|
|
74 |
"source": [
|
75 |
"# Computing difference: CA Boundary - Conserved Areas = Non-conserved areas\n",
|
76 |
"# This chunk will take ~2 hours to run \n",
|
77 |
-
"con = ibis.duckdb.connect(\"
|
78 |
"\n",
|
79 |
"# CA Boundary \n",
|
80 |
"ca_all_tbl = (\n",
|
@@ -118,6 +143,14 @@
|
|
118 |
"ca.execute().to_parquet(ca_nonconserved_parquet)"
|
119 |
]
|
120 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
{
|
122 |
"cell_type": "code",
|
123 |
"execution_count": null,
|
@@ -129,9 +162,9 @@
|
|
129 |
"non_conserved = (\n",
|
130 |
" conn.read_parquet(ca_nonconserved_parquet)\n",
|
131 |
" .cast({\"geom\": \"geometry\"})\n",
|
132 |
-
" .mutate(established = ibis.null(), gap_code =
|
133 |
" access_type = ibis.null(), manager = ibis.null(), manager_type = ibis.null(),\n",
|
134 |
-
" ecoregion = ibis.null(), easement = ibis.null(), id =
|
135 |
" status = ibis.literal(\"non-conserved\"),\n",
|
136 |
" acres = _.geom.area() / 4046.8564224 #convert sq meters to acres\n",
|
137 |
" )\n",
|
@@ -139,9 +172,7 @@
|
|
139 |
" \"access_type\": \"string\", \"manager\": \"string\", \"manager_type\": \"string\",\n",
|
140 |
" \"ecoregion\": \"string\", \"easement\": \"string\", \"id\": \"int64\", \"type\": \"string\",\n",
|
141 |
" \"acres\":\"float32\"}) #match schema to CA Nature\n",
|
142 |
-
")
|
143 |
-
"\n",
|
144 |
-
"non_conserved.execute().to_parquet(ca_nonconserved_clean_parquet)"
|
145 |
]
|
146 |
},
|
147 |
{
|
@@ -149,7 +180,7 @@
|
|
149 |
"id": "104254ef-f6e9-4f03-8797-de55091774d5",
|
150 |
"metadata": {},
|
151 |
"source": [
|
152 |
-
"
|
153 |
]
|
154 |
},
|
155 |
{
|
@@ -181,7 +212,7 @@
|
|
181 |
"id": "1f335433-ff89-4966-bf98-c11a0b233686",
|
182 |
"metadata": {},
|
183 |
"source": [
|
184 |
-
"
|
185 |
]
|
186 |
},
|
187 |
{
|
@@ -201,10 +232,11 @@
|
|
201 |
" .filter(_.Release_Year == 2024) # having both 2023 and 2024 is redudant since 2024 is the superset.\n",
|
202 |
" .left_join(new2024, \"OBJECTID\") # newly established 2024 polygons \n",
|
203 |
" .mutate(established=_.established.fill_null(\"pre-2024\")) \n",
|
204 |
-
" .mutate(geom = _.SHAPE.convert(\"epsg:3310\",\"epsg:4326\"))\n",
|
205 |
" .rename(name = \"cpad_PARK_NAME\", access_type = \"cpad_ACCESS_TYP\", manager = \"cpad_MNG_AGENCY\",\n",
|
206 |
" manager_type = \"cpad_MNG_AG_LEV\", id = \"OBJECTID\", type = \"TYPE\", \n",
|
207 |
-
" ecoregion = \"CA_Ecoregion_Name\", acres = \"Acres\", gap_code = \"reGAP\")\n",
|
|
|
|
|
208 |
" .mutate(manager = _.manager.substitute({\"\": \"Unknown\"})) \n",
|
209 |
" .mutate(manager_type = _.manager_type.substitute({\"\": \"Unknown\"}))\n",
|
210 |
" .mutate(access_type = _.access_type.substitute({\"\": \"Unknown Access\"}))\n",
|
@@ -218,42 +250,246 @@
|
|
218 |
" _.ecoregion, _.easement, _.acres, _.id, _.type, _.geom)\n",
|
219 |
" .union(non_conserved)\n",
|
220 |
" .mutate(acres = _.acres.round(4))\n",
|
|
|
|
|
221 |
" )\n",
|
222 |
"\n",
|
223 |
"\n",
|
224 |
"ca2024 = ca.execute()\n",
|
225 |
-
"ca2024.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
]
|
227 |
},
|
228 |
{
|
229 |
"cell_type": "markdown",
|
230 |
-
"id": "
|
231 |
"metadata": {},
|
232 |
"source": [
|
233 |
-
"
|
234 |
]
|
235 |
},
|
236 |
{
|
237 |
"cell_type": "code",
|
238 |
"execution_count": null,
|
239 |
-
"id": "
|
240 |
"metadata": {},
|
241 |
"outputs": [],
|
242 |
"source": [
|
243 |
-
"
|
244 |
-
"
|
245 |
-
"
|
246 |
-
"
|
247 |
-
"\n",
|
248 |
-
"
|
249 |
-
"
|
250 |
-
"
|
251 |
-
"
|
252 |
-
"
|
253 |
-
"
|
254 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
" \n",
|
256 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
]
|
258 |
}
|
259 |
],
|
|
|
5 |
"id": "4b4adc2a-bf0c-4ace-87be-dbaf90be0125",
|
6 |
"metadata": {},
|
7 |
"source": [
|
8 |
+
"# Pre-processing script"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
]
|
10 |
},
|
11 |
{
|
|
|
25 |
"from ibis import _\n",
|
26 |
"import geopandas as gpd\n",
|
27 |
"import duckdb\n",
|
28 |
+
"from cng.utils import ST_MakeValid\n",
|
29 |
"\n",
|
30 |
+
"conn = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
|
31 |
"ca_parquet = \"https://data.source.coop/cboettig/ca30x30/ca_areas.parquet\"\n",
|
32 |
"# or use local copy:\n",
|
33 |
"# ca_parquet = \"../data/ca_areas.parquet\" # CA Nature Data \n",
|
34 |
"\n",
|
35 |
+
"path = '../data/ca-layers/'\n",
|
36 |
+
"\n",
|
37 |
+
"# CA Nature Data \n",
|
38 |
"ca_boundary = \"../data/ca_shape\"\n",
|
39 |
+
"ca_boundary_parquet = path + \"ca_boundary.parquet\"\n",
|
40 |
+
"ca_nonconserved_parquet = path + \"ca_notPAD_500m_simplify.parquet\"\n",
|
41 |
+
"ca_all_parquet = path + \"ca-all.parquet\"\n",
|
42 |
+
"ca_all_stats = path + \"ca-all-stats.parquet\"\n",
|
43 |
+
"ca_final_parquet = \"ca_30x30_stats.parquet\"\n",
|
44 |
+
"#vector data \n",
|
45 |
+
"svi = path + 'SVI2022_US_tract' #4326\n",
|
46 |
+
"fire = path + 'calfire-2023'#4326\n",
|
47 |
+
"rxburn = path + 'calfire-rxburn-2023'#4326\n",
|
48 |
+
"\n",
|
49 |
+
"#raster data \n",
|
50 |
+
"irrecoverable_c = path + 'ca_irrecoverable_c_2018_cog' # EPSG:3857\n",
|
51 |
+
"manageable_c = path + 'ca_manageable_c_2018_cog'# EPSG:3857\n",
|
52 |
+
"richness = path + 'SpeciesRichness_All' # EPSG:3857\n",
|
53 |
+
"rsr = path + 'RSR_All'# EPSG:3857\n"
|
54 |
]
|
55 |
},
|
56 |
{
|
|
|
58 |
"id": "907235f6-48a5-4c55-b779-3bb6839acf2b",
|
59 |
"metadata": {},
|
60 |
"source": [
|
61 |
+
"# Step 1: Computing all \"non-conserved\" areas"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "markdown",
|
66 |
+
"id": "c6c1cbf5-bc6e-4238-ab87-c467067235c0",
|
67 |
+
"metadata": {},
|
68 |
+
"source": [
|
69 |
+
"#### Convert CA Boundary file to parquet "
|
70 |
]
|
71 |
},
|
72 |
{
|
|
|
81 |
"ca_all.to_parquet(ca_boundary_parquet)"
|
82 |
]
|
83 |
},
|
84 |
+
{
|
85 |
+
"cell_type": "markdown",
|
86 |
+
"id": "3dfcb35b-e6a9-4a89-af05-c65909191f2b",
|
87 |
+
"metadata": {},
|
88 |
+
"source": [
|
89 |
+
"#### Computing difference: CA Boundary - Conserved Areas = Non-conserved areas\n",
|
90 |
+
"(This chunk will take ~2 hours to run)"
|
91 |
+
]
|
92 |
+
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
"execution_count": null,
|
|
|
99 |
"source": [
|
100 |
"# Computing difference: CA Boundary - Conserved Areas = Non-conserved areas\n",
|
101 |
"# This chunk will take ~2 hours to run \n",
|
102 |
+
"con = ibis.duckdb.connect(\"tmp\", extensions=[\"spatial\"]) #save to disk\n",
|
103 |
"\n",
|
104 |
"# CA Boundary \n",
|
105 |
"ca_all_tbl = (\n",
|
|
|
143 |
"ca.execute().to_parquet(ca_nonconserved_parquet)"
|
144 |
]
|
145 |
},
|
146 |
+
{
|
147 |
+
"cell_type": "markdown",
|
148 |
+
"id": "ce52b1e0-027e-4915-9e7b-e51e946560ed",
|
149 |
+
"metadata": {},
|
150 |
+
"source": [
|
151 |
+
"#### Non-conserved areas need to match CA Nature schema"
|
152 |
+
]
|
153 |
+
},
|
154 |
{
|
155 |
"cell_type": "code",
|
156 |
"execution_count": null,
|
|
|
162 |
"non_conserved = (\n",
|
163 |
" conn.read_parquet(ca_nonconserved_parquet)\n",
|
164 |
" .cast({\"geom\": \"geometry\"})\n",
|
165 |
+
" .mutate(established = ibis.null(), gap_code = 0, name = ibis.literal(\"Non-Conserved Areas\"),\n",
|
166 |
" access_type = ibis.null(), manager = ibis.null(), manager_type = ibis.null(),\n",
|
167 |
+
" ecoregion = ibis.null(), easement = ibis.null(), id = 0, type = ibis.literal(\"Land\"),\n",
|
168 |
" status = ibis.literal(\"non-conserved\"),\n",
|
169 |
" acres = _.geom.area() / 4046.8564224 #convert sq meters to acres\n",
|
170 |
" )\n",
|
|
|
172 |
" \"access_type\": \"string\", \"manager\": \"string\", \"manager_type\": \"string\",\n",
|
173 |
" \"ecoregion\": \"string\", \"easement\": \"string\", \"id\": \"int64\", \"type\": \"string\",\n",
|
174 |
" \"acres\":\"float32\"}) #match schema to CA Nature\n",
|
175 |
+
")"
|
|
|
|
|
176 |
]
|
177 |
},
|
178 |
{
|
|
|
180 |
"id": "104254ef-f6e9-4f03-8797-de55091774d5",
|
181 |
"metadata": {},
|
182 |
"source": [
|
183 |
+
"# Step 2: Isolate pre-2024 from 2024 polygons"
|
184 |
]
|
185 |
},
|
186 |
{
|
|
|
212 |
"id": "1f335433-ff89-4966-bf98-c11a0b233686",
|
213 |
"metadata": {},
|
214 |
"source": [
|
215 |
+
"# Step 3: Join all protected land data into single parquet file "
|
216 |
]
|
217 |
},
|
218 |
{
|
|
|
232 |
" .filter(_.Release_Year == 2024) # having both 2023 and 2024 is redudant since 2024 is the superset.\n",
|
233 |
" .left_join(new2024, \"OBJECTID\") # newly established 2024 polygons \n",
|
234 |
" .mutate(established=_.established.fill_null(\"pre-2024\")) \n",
|
|
|
235 |
" .rename(name = \"cpad_PARK_NAME\", access_type = \"cpad_ACCESS_TYP\", manager = \"cpad_MNG_AGENCY\",\n",
|
236 |
" manager_type = \"cpad_MNG_AG_LEV\", id = \"OBJECTID\", type = \"TYPE\", \n",
|
237 |
+
" ecoregion = \"CA_Ecoregion_Name\", acres = \"Acres\", gap_code = \"reGAP\", geom = \"SHAPE\")\n",
|
238 |
+
" .cast({\"gap_code\": \"int16\"})\n",
|
239 |
+
" .cast({\"id\": \"int64\"})\n",
|
240 |
" .mutate(manager = _.manager.substitute({\"\": \"Unknown\"})) \n",
|
241 |
" .mutate(manager_type = _.manager_type.substitute({\"\": \"Unknown\"}))\n",
|
242 |
" .mutate(access_type = _.access_type.substitute({\"\": \"Unknown Access\"}))\n",
|
|
|
250 |
" _.ecoregion, _.easement, _.acres, _.id, _.type, _.geom)\n",
|
251 |
" .union(non_conserved)\n",
|
252 |
" .mutate(acres = _.acres.round(4))\n",
|
253 |
+
" .mutate(geom = ST_MakeValid(_.geom))\n",
|
254 |
+
" .drop_null(['geom'],how = \"any\")\n",
|
255 |
" )\n",
|
256 |
"\n",
|
257 |
"\n",
|
258 |
"ca2024 = ca.execute()\n",
|
259 |
+
"ca2024 = ca2024.set_crs(\"epsg:3310\")\n",
|
260 |
+
"ca2024.to_parquet(ca_all_parquet)"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "markdown",
|
265 |
+
"id": "44d64f2b-a65b-4ac1-9943-2d96f5c91e1d",
|
266 |
+
"metadata": {},
|
267 |
+
"source": [
|
268 |
+
"# Step 4: Compute zonal stats"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "markdown",
|
273 |
+
"id": "e129b0cc-ee7d-4e58-a8d8-d6f2476bd62c",
|
274 |
+
"metadata": {},
|
275 |
+
"source": [
|
276 |
+
"#### Functions: Reproject and compute overlap for vector data "
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": null,
|
282 |
+
"id": "fdeeb7ac-efa0-4a7b-9143-72d8ec911809",
|
283 |
+
"metadata": {},
|
284 |
+
"outputs": [],
|
285 |
+
"source": [
|
286 |
+
"con = ibis.duckdb.connect(\"tmp2\", extensions=[\"spatial\"])\n",
|
287 |
+
"\n",
|
288 |
+
"def reproject_vectors(file, gdf_temp): # change data layer projections to match CA Nature data \n",
|
289 |
+
" gdf_temp = gdf_temp.rename_geometry('geom')\n",
|
290 |
+
" gdf_temp[\"geom\"] = gdf_temp[\"geom\"].make_valid()\n",
|
291 |
+
" gdf_temp = gdf_temp.to_crs(\"EPSG:3310\")\n",
|
292 |
+
" gdf_temp.to_parquet(file + '-epsg3310.parquet')\n",
|
293 |
+
" return\n",
|
294 |
+
"\n",
|
295 |
+
"def vector_vector_stats(base, data_layer):\n",
|
296 |
+
" t1 = con.read_parquet(base).select(_.id, _.geom)\n",
|
297 |
+
" t2 = con.read_parquet(data_layer).select(_.geom)\n",
|
298 |
+
" expr = (t1\n",
|
299 |
+
" .left_join(t2, t1.geom.intersects(t2.geom))\n",
|
300 |
+
" .group_by(t1.id, t1.geom)\n",
|
301 |
+
" .agg(overlap_fraction = (t1.geom.intersection(t2.geom).area() / t1.geom.area()).sum().coalesce(0).round(3) )\n",
|
302 |
+
" )\n",
|
303 |
+
" ibis.to_sql(expr)\n",
|
304 |
+
" gdf = expr.execute()\n",
|
305 |
+
" return gdf[['id','overlap_fraction']]\n",
|
306 |
+
" "
|
307 |
]
|
308 |
},
|
309 |
{
|
310 |
"cell_type": "markdown",
|
311 |
+
"id": "f45a0f52-6d18-45b4-8585-af3f1190b000",
|
312 |
"metadata": {},
|
313 |
"source": [
|
314 |
+
"#### Compute zonal stats with vector data "
|
315 |
]
|
316 |
},
|
317 |
{
|
318 |
"cell_type": "code",
|
319 |
"execution_count": null,
|
320 |
+
"id": "b110da15-d2ac-4457-9241-f02f44dc436a",
|
321 |
"metadata": {},
|
322 |
"outputs": [],
|
323 |
"source": [
|
324 |
+
"%%time\n",
|
325 |
+
"vectors = [svi,fire,rxburn]\n",
|
326 |
+
"names = ['svi','fire','rxburn']\n",
|
327 |
+
"\n",
|
328 |
+
"gdf = gpd.read_parquet(ca_all_parquet) # CA Nature data \n",
|
329 |
+
"gdf = gdf.set_index('id') # set the index to the col we are joining on for gpd.join()\n",
|
330 |
+
"\n",
|
331 |
+
"# clean data + reproject + zonal stats \n",
|
332 |
+
"for file,name in zip(vectors,names):\n",
|
333 |
+
" gdf_temp = gpd.read_parquet(file + '.parquet') #load in vector data layer \n",
|
334 |
+
"\n",
|
335 |
+
" # filter: we only want 10 year range for fire\n",
|
336 |
+
" if name in ['fire','rxburn']:\n",
|
337 |
+
" gdf_temp = gdf_temp[gdf_temp['YEAR_']>=2013] \n",
|
338 |
+
"\n",
|
339 |
+
" # filter: only want CA data, not nationwide. \n",
|
340 |
+
" if name == 'svi': \n",
|
341 |
+
" gdf_temp = gdf_temp[gdf_temp['STATE']==\"California\"]\n",
|
342 |
+
" \n",
|
343 |
+
" reproject_vectors(file, gdf_temp) # change projection to match CA Nature data \n",
|
344 |
+
" gdf_zonal = vector_vector_stats(ca_all_parquet, file + '-epsg3310.parquet') #compute zonal stats \n",
|
345 |
+
" gdf_zonal = gdf_zonal.rename(columns ={'overlap_fraction':name}) \n",
|
346 |
+
" gdf = gdf.join(gdf_zonal.set_index('id')) # joining new zonal stats column with CA Nature data. \n",
|
347 |
+
"\n",
|
348 |
+
"gdf.to_parquet(ca_all_stats) #save CA Nature + zonal stats "
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "markdown",
|
353 |
+
"id": "e0fccaf3-50a8-4324-82fa-34838987334b",
|
354 |
+
"metadata": {},
|
355 |
+
"source": [
|
356 |
+
"#### Function: Reproject raster data"
|
357 |
+
]
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"cell_type": "code",
|
361 |
+
"execution_count": null,
|
362 |
+
"id": "aade11d9-87b9-403d-bad1-3069663807a9",
|
363 |
+
"metadata": {},
|
364 |
+
"outputs": [],
|
365 |
+
"source": [
|
366 |
+
"import subprocess\n",
|
367 |
+
"\n",
|
368 |
+
"def raster_reprojection(input_file, output_file, epsg=\"EPSG:3310\"):\n",
|
369 |
+
" cmd = [\n",
|
370 |
+
" \"gdalwarp\",\n",
|
371 |
+
" \"-t_srs\", epsg,\n",
|
372 |
+
" input_file,\n",
|
373 |
+
" output_file\n",
|
374 |
+
" ]\n",
|
375 |
+
" try:\n",
|
376 |
+
" subprocess.run(cmd, check=True)\n",
|
377 |
+
" print(f\"Reprojection successful! Output saved to: {output_file}\")\n",
|
378 |
+
" except subprocess.CalledProcessError as e:\n",
|
379 |
+
" print(f\"Error occurred during reprojection: {e}\")"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"cell_type": "markdown",
|
384 |
+
"id": "94e924fd-d927-4458-ba1f-670b4047d149",
|
385 |
+
"metadata": {},
|
386 |
+
"source": [
|
387 |
+
"#### Compute zonal stats with raster data"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "code",
|
392 |
+
"execution_count": null,
|
393 |
+
"id": "3ce1bc61-eabd-4a73-ba34-a1707bc14f74",
|
394 |
+
"metadata": {},
|
395 |
+
"outputs": [],
|
396 |
+
"source": [
|
397 |
+
"%%time\n",
|
398 |
+
"import rasterio\n",
|
399 |
+
"from exactextract import exact_extract\n",
|
400 |
+
"\n",
|
401 |
+
"rasters = [irrecoverable_c, manageable_c, richness, rsr]\n",
|
402 |
+
"names = ['irrecoverable_carbon','manageable_carbon','richness','rsr']\n",
|
403 |
+
"\n",
|
404 |
+
"gdf = gpd.read_parquet(ca_all_stats) # zonal stats data from vector data layers step \n",
|
405 |
+
"\n",
|
406 |
+
"# exact_extract() is a bit finnicky so we need to make the following changes to our data for it to work:\n",
|
407 |
+
"gdf.index.names = ['ca_id'] # rename \"id\" since it confuses the name with a field in the raster data\n",
|
408 |
+
"gdf = gdf.reset_index() # can't have an index \n",
|
409 |
+
"gdf.to_parquet(ca_all_stats) #saving changes \n",
|
410 |
+
"\n",
|
411 |
+
"for file,name in zip(rasters,names):\n",
|
412 |
+
" raster_reprojection(file+'.tif', file+'_epsg3310.tif') #reproject rasters to match CA Nature\n",
|
413 |
+
" temp = exact_extract(file+'_epsg3310.tif', ca_all_stats, [\"mean\"], include_cols=[\"ca_id\"], output = 'pandas') #zonal stats \n",
|
414 |
" \n",
|
415 |
+
" #the column we want is 'band_1_mean'; these rasters have multiple bands. \n",
|
416 |
+
" if name in ['irrecoverable_carbon','manageable_carbon']:\n",
|
417 |
+
" temp = temp[['ca_id','band_1_mean']] \n",
|
418 |
+
" temp = temp.rename(columns ={'band_1_mean':name}) \n",
|
419 |
+
"\n",
|
420 |
+
" #these rasters have only 1 band, so zonal stats column is 'mean'\n",
|
421 |
+
" elif name in ['richness','rsr']:\n",
|
422 |
+
" temp = temp[['ca_id','mean']] \n",
|
423 |
+
" temp = temp.rename(columns ={'mean':name})\n",
|
424 |
+
"\n",
|
425 |
+
" temp[name] = temp[name].round(3) #rounding stats \n",
|
426 |
+
" \n",
|
427 |
+
" # joining with gpd.join(), need to set an index \n",
|
428 |
+
" gdf = gdf.set_index(\"ca_id\").join(temp.set_index(\"ca_id\")) \n",
|
429 |
+
"\n",
|
430 |
+
" # exact_extract() won't work with index, so now that it's joined, we reset the index. \n",
|
431 |
+
" gdf = gdf.reset_index() \n",
|
432 |
+
"\n",
|
433 |
+
"gdf = gdf.rename(columns ={'ca_id':'id'}) #reverting back to \"id\" col name, since we are finished with exact_extract() \n",
|
434 |
+
"gdf.to_parquet(ca_all_stats) # save results "
|
435 |
+
]
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"cell_type": "markdown",
|
439 |
+
"id": "ec619f4e-1338-492a-a334-a7796f4f55a1",
|
440 |
+
"metadata": {},
|
441 |
+
"source": [
|
442 |
+
"# Step 5: Upload file"
|
443 |
+
]
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"cell_type": "code",
|
447 |
+
"execution_count": null,
|
448 |
+
"id": "30f47b26-cd18-4e8c-a19b-9d1f19b10873",
|
449 |
+
"metadata": {},
|
450 |
+
"outputs": [],
|
451 |
+
"source": [
|
452 |
+
"from cng.utils import set_secrets, hf_upload, s3_cp \n",
|
453 |
+
"conn = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
|
454 |
+
"\n",
|
455 |
+
"set_secrets(conn)\n",
|
456 |
+
"\n",
|
457 |
+
"#to use PMTiles, I need to convert to 4326\n",
|
458 |
+
"ca_all = (conn\n",
|
459 |
+
" .read_parquet(ca_all_stats)\n",
|
460 |
+
" .mutate(geom = _.geom.convert(\"epsg:3310\",\"epsg:4326\"))\n",
|
461 |
+
" )\n",
|
462 |
+
"\n",
|
463 |
+
"ca_all = ca_all.execute()\n",
|
464 |
+
"ca_all = ca_all.set_crs(\"epsg:4326\")\n",
|
465 |
+
"ca_all.to_parquet(path + ca_final_parquet)\n",
|
466 |
+
"\n",
|
467 |
+
"# upload to minio and HF\n",
|
468 |
+
"hf_upload(ca_final_parquet, path+ca_final_parquet)\n",
|
469 |
+
"s3_cp(path+ca_final_parquet, \"s3://public-ca30x30/\"+ca_final_parquet, \"minio\")\n"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"cell_type": "markdown",
|
474 |
+
"id": "856646af-4abb-41bb-99a6-2c10f6409cad",
|
475 |
+
"metadata": {},
|
476 |
+
"source": [
|
477 |
+
"### PMTiles for app display"
|
478 |
+
]
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"cell_type": "code",
|
482 |
+
"execution_count": null,
|
483 |
+
"id": "9c52136c-df9a-4998-a9e9-055d80ee4561",
|
484 |
+
"metadata": {},
|
485 |
+
"outputs": [],
|
486 |
+
"source": [
|
487 |
+
"from cng.utils import to_geojson, to_pmtiles\n",
|
488 |
+
"to_geojson(path+ca_final_parquet, path+ 'ca_30x30_stats.geojson')\n",
|
489 |
+
"\n",
|
490 |
+
"pmtiles = to_pmtiles(path+ 'ca_30x30_stats.geojson',path+ 'ca_30x30_stats.pmtiles')\n",
|
491 |
+
"hf_upload(\"ca_30x30_stats.pmtiles\",path+ 'ca_30x30_stats.pmtiles')\n",
|
492 |
+
"s3_cp(path+ 'ca_30x30_stats.pmtiles', \"s3://public-ca30x30/ca_30x30_stats.pmtiles\", \"minio\")\n"
|
493 |
]
|
494 |
}
|
495 |
],
|
preprocess/preprocess_part2.ipynb
DELETED
@@ -1,1165 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "39bf1de3-cba6-475a-a988-ad48e5af4a04",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"# Get zonal stats "
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": null,
|
14 |
-
"id": "ba047a55-642d-4c27-a367-5f35f4406218",
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [],
|
17 |
-
"source": [
|
18 |
-
"import ibis\n",
|
19 |
-
"import ibis.selectors as s\n",
|
20 |
-
"from ibis import _\n",
|
21 |
-
"import fiona\n",
|
22 |
-
"import geopandas as gpd\n",
|
23 |
-
"import rioxarray\n",
|
24 |
-
"from shapely.geometry import box\n",
|
25 |
-
"\n",
|
26 |
-
"import rasterio\n",
|
27 |
-
"from rasterio.mask import mask\n",
|
28 |
-
"from rasterstats import zonal_stats\n",
|
29 |
-
"import pandas as pd\n",
|
30 |
-
"from joblib import Parallel, delayed\n",
|
31 |
-
"\n",
|
32 |
-
"con = ibis.duckdb.connect()\n",
|
33 |
-
"con.load_extension(\"spatial\")\n",
|
34 |
-
"threads = -1"
|
35 |
-
]
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"cell_type": "code",
|
39 |
-
"execution_count": null,
|
40 |
-
"id": "8b5656db-2d1d-4ca8-826d-7588126e52e8",
|
41 |
-
"metadata": {},
|
42 |
-
"outputs": [],
|
43 |
-
"source": [
|
44 |
-
"# cropping US data to only CA \n",
|
45 |
-
"def crop_raster_to_bounds(tif_file, vector_gdf):\n",
|
46 |
-
" with rasterio.open(tif_file) as src:\n",
|
47 |
-
" # Get California's bounding box in the same CRS as the raster\n",
|
48 |
-
" california_bounds = vector_gdf.total_bounds\n",
|
49 |
-
" california_bounds = rasterio.coords.BoundingBox(\n",
|
50 |
-
" *california_bounds\n",
|
51 |
-
" )\n",
|
52 |
-
" # Crop the raster to the California bounding box\n",
|
53 |
-
" out_image, out_transform = mask(src, [california_bounds], crop=True)\n",
|
54 |
-
" out_meta = src.meta.copy()\n",
|
55 |
-
" out_meta.update({\n",
|
56 |
-
" \"driver\": \"GTiff\",\n",
|
57 |
-
" \"height\": out_image.shape[1],\n",
|
58 |
-
" \"width\": out_image.shape[2],\n",
|
59 |
-
" \"transform\": out_transform\n",
|
60 |
-
" })\n",
|
61 |
-
" print(\"Unique values in cropped raster:\", np.unique(out_image))\n",
|
62 |
-
"\n",
|
63 |
-
" return out_image, out_meta\n"
|
64 |
-
]
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"cell_type": "code",
|
68 |
-
"execution_count": null,
|
69 |
-
"id": "9a0e3446-16ac-40b0-9e34-db0157038c5a",
|
70 |
-
"metadata": {},
|
71 |
-
"outputs": [],
|
72 |
-
"source": [
|
73 |
-
"def big_zonal_stats(vec_file, tif_file, stats, col_name, n_jobs, verbose=10, timeout=10000):\n",
|
74 |
-
" gdf = gpd.read_parquet(vec_file)\n",
|
75 |
-
" if gdf.crs is None:\n",
|
76 |
-
" gdf = gdf.set_crs(\"EPSG:4326\")\n",
|
77 |
-
" gdf = gdf.rename(columns={\"geom\": \"geometry\"})\n",
|
78 |
-
" gdf = gdf.set_geometry(\"geometry\")\n",
|
79 |
-
" gdf = gdf[gdf[\"geometry\"].notna()].copy()\n",
|
80 |
-
"\n",
|
81 |
-
" with rasterio.open(tif_file) as src:\n",
|
82 |
-
" raster_crs = src.crs\n",
|
83 |
-
" gdf = gdf.to_crs(raster_crs) # Transform vector to raster CRS\n",
|
84 |
-
" \n",
|
85 |
-
" # CA bounding box + convert it to a polygon in raster CRS\n",
|
86 |
-
" california_polygon = box(*gdf.total_bounds)\n",
|
87 |
-
" \n",
|
88 |
-
" out_image, out_transform = mask(src, [california_polygon], crop=True, nodata=src.nodata)\n",
|
89 |
-
"\n",
|
90 |
-
" # If raster is 3D, select the first band\n",
|
91 |
-
" if out_image.ndim == 3:\n",
|
92 |
-
" out_image = out_image[0]\n",
|
93 |
-
"\n",
|
94 |
-
" # compute zonal statistics for each geometry slice\n",
|
95 |
-
" def get_stats(geom_slice):\n",
|
96 |
-
" geom = [geom_slice.geometry]\n",
|
97 |
-
" stats_result = zonal_stats(\n",
|
98 |
-
" geom, out_image, stats=stats, affine=out_transform, all_touched=True, nodata=src.nodata\n",
|
99 |
-
" )\n",
|
100 |
-
" return stats_result[0] if stats_result and stats_result[0].get(\"mean\") is not None else {'mean': None}\n",
|
101 |
-
"\n",
|
102 |
-
" output = [get_stats(row) for row in gdf.itertuples()]\n",
|
103 |
-
" gdf[col_name] = [res['mean'] for res in output]\n",
|
104 |
-
"\n",
|
105 |
-
" return gdf"
|
106 |
-
]
|
107 |
-
},
|
108 |
-
{
|
109 |
-
"cell_type": "code",
|
110 |
-
"execution_count": null,
|
111 |
-
"id": "ce66bae6-bac5-4837-9b01-fde16a00c303",
|
112 |
-
"metadata": {},
|
113 |
-
"outputs": [],
|
114 |
-
"source": [
|
115 |
-
"# getting local copies of data \n",
|
116 |
-
"# aws s3 cp s3://vizzuality/hfp-100/hfp_2021_100m_v1-2_cog.tif . --endpoint-url=https://data.source.coop\n",
|
117 |
-
"# aws s3 cp s3://vizzuality/lg-land-carbon-data/natcrop_bii_100m_cog.tif . --endpoint-url=https://data.source.coop\n",
|
118 |
-
"# aws s3 cp s3://vizzuality/lg-land-carbon-data/natcrop_fii_100m_cog.tif . --endpoint-url=https://data.source.coop\n",
|
119 |
-
"# aws s3 cp s3://vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif . --endpoint-url=https://data.source.coop\n",
|
120 |
-
"# aws s3 cp s3://vizzuality/lg-land-carbon-data/natcrop_reduction_100m_cog.tif . --endpoint-url=https://data.source.coop\n",
|
121 |
-
"# aws s3 cp s3://cboettig/carbon/cogs/irrecoverable_c_total_2018.tif . --endpoint-url=https://data.source.coop\n",
|
122 |
-
"# aws s3 cp s3://cboettig/carbon/cogs/manageable_c_total_2018.tif . --endpoint-url=https://data.source.coop\n",
|
123 |
-
"# ! aws s3 cp s3://cboettig/justice40/disadvantaged-communities.parquet . --endpoint-url=https://data.source.coop\n",
|
124 |
-
"# minio/shared-biodiversity/redlist/cog/combined_sr_2022.tif\n",
|
125 |
-
"# /home/rstudio/minio/shared-biodiversity/redlist/cog/combined_rwr_2022.tif\n",
|
126 |
-
"# ! aws s3 cp s3://cboettig/social-vulnerability/svi2020_us_tract.parquet . --endpoint-url=https://data.source.coop\n"
|
127 |
-
]
|
128 |
-
},
|
129 |
-
{
|
130 |
-
"cell_type": "markdown",
|
131 |
-
"id": "531e7f88-1ce1-4027-b0ab-aab597e9a2b2",
|
132 |
-
"metadata": {},
|
133 |
-
"source": [
|
134 |
-
"# Biodiversity Data"
|
135 |
-
]
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"cell_type": "code",
|
139 |
-
"execution_count": null,
|
140 |
-
"id": "66dec912-ad8a-41cf-a5c2-6ec9cc350984",
|
141 |
-
"metadata": {},
|
142 |
-
"outputs": [],
|
143 |
-
"source": [
|
144 |
-
"%%time\n",
|
145 |
-
"tif_file = 'SpeciesRichness_All.tif'\n",
|
146 |
-
"vec_file = \"/home/rstudio/github/ca-30x30/ca2024-30m.parquet\"\n",
|
147 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"richness\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
148 |
-
]
|
149 |
-
},
|
150 |
-
{
|
151 |
-
"cell_type": "code",
|
152 |
-
"execution_count": null,
|
153 |
-
"id": "b081ec1a-ea91-485e-95f9-12cd06c2002a",
|
154 |
-
"metadata": {},
|
155 |
-
"outputs": [],
|
156 |
-
"source": [
|
157 |
-
"%%time\n",
|
158 |
-
"tif_file = 'RSR_All.tif'\n",
|
159 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
160 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],\n",
|
161 |
-
" col_name = \"rsr\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")"
|
162 |
-
]
|
163 |
-
},
|
164 |
-
{
|
165 |
-
"cell_type": "code",
|
166 |
-
"execution_count": null,
|
167 |
-
"id": "d5133f36-404e-4f6a-a90b-eb5f098e6f06",
|
168 |
-
"metadata": {},
|
169 |
-
"outputs": [],
|
170 |
-
"source": [
|
171 |
-
"%%time\n",
|
172 |
-
"tif_file = 'combined_sr_2022.tif'\n",
|
173 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
174 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"all_species_richness\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
175 |
-
]
|
176 |
-
},
|
177 |
-
{
|
178 |
-
"cell_type": "code",
|
179 |
-
"execution_count": null,
|
180 |
-
"id": "2ce56a66-34e3-4f61-95ae-65d1f06bc468",
|
181 |
-
"metadata": {},
|
182 |
-
"outputs": [],
|
183 |
-
"source": [
|
184 |
-
"%%time\n",
|
185 |
-
"tif_file = 'combined_rwr_2022.tif'\n",
|
186 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
187 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"all_species_rwr\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
188 |
-
]
|
189 |
-
},
|
190 |
-
{
|
191 |
-
"cell_type": "markdown",
|
192 |
-
"id": "6c129894-3775-4842-8767-f81a8f626d2c",
|
193 |
-
"metadata": {},
|
194 |
-
"source": [
|
195 |
-
"# Carbon Data"
|
196 |
-
]
|
197 |
-
},
|
198 |
-
{
|
199 |
-
"cell_type": "code",
|
200 |
-
"execution_count": null,
|
201 |
-
"id": "19c3e402-8712-450f-b3dd-af9d0c01689c",
|
202 |
-
"metadata": {},
|
203 |
-
"outputs": [],
|
204 |
-
"source": [
|
205 |
-
"%%time\n",
|
206 |
-
"tif_file = 'irrecoverable_c_total_2018.tif'\n",
|
207 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
208 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"irrecoverable_carbon\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
|
209 |
-
"\n"
|
210 |
-
]
|
211 |
-
},
|
212 |
-
{
|
213 |
-
"cell_type": "code",
|
214 |
-
"execution_count": null,
|
215 |
-
"id": "c55c777a-48ce-4403-a171-cfc0d2351df6",
|
216 |
-
"metadata": {},
|
217 |
-
"outputs": [],
|
218 |
-
"source": [
|
219 |
-
"%%time\n",
|
220 |
-
"tif_file = 'manageable_c_total_2018.tif'\n",
|
221 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
222 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"manageable_carbon\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
223 |
-
]
|
224 |
-
},
|
225 |
-
{
|
226 |
-
"cell_type": "code",
|
227 |
-
"execution_count": null,
|
228 |
-
"id": "33ac0fb7-2cde-448d-a634-1973e34ac14f",
|
229 |
-
"metadata": {},
|
230 |
-
"outputs": [],
|
231 |
-
"source": [
|
232 |
-
"%%time\n",
|
233 |
-
"tif_file = 'deforest_carbon_100m_cog.tif'\n",
|
234 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
235 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], \n",
|
236 |
-
" col_name = \"deforest_carbon\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
237 |
-
]
|
238 |
-
},
|
239 |
-
{
|
240 |
-
"cell_type": "markdown",
|
241 |
-
"id": "096c00a8-57af-41d7-93cc-85d85414aa4f",
|
242 |
-
"metadata": {},
|
243 |
-
"source": [
|
244 |
-
"# Human Impact Data"
|
245 |
-
]
|
246 |
-
},
|
247 |
-
{
|
248 |
-
"cell_type": "code",
|
249 |
-
"execution_count": null,
|
250 |
-
"id": "d2a8c10f-e94b-4eef-940f-2af9599edee1",
|
251 |
-
"metadata": {},
|
252 |
-
"outputs": [],
|
253 |
-
"source": [
|
254 |
-
"%%time\n",
|
255 |
-
"tif_file = 'natcrop_bii_100m_cog.tif'\n",
|
256 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
257 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], \n",
|
258 |
-
" col_name = \"biodiversity_intactness_loss\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
259 |
-
]
|
260 |
-
},
|
261 |
-
{
|
262 |
-
"cell_type": "code",
|
263 |
-
"execution_count": null,
|
264 |
-
"id": "1c318f39-7ca0-4f3c-80fb-73f72202e4e0",
|
265 |
-
"metadata": {},
|
266 |
-
"outputs": [],
|
267 |
-
"source": [
|
268 |
-
"%%time\n",
|
269 |
-
"tif_file = 'natcrop_fii_100m_cog.tif'\n",
|
270 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
271 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],\n",
|
272 |
-
" col_name = \"forest_integrity_loss\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
|
273 |
-
"\n"
|
274 |
-
]
|
275 |
-
},
|
276 |
-
{
|
277 |
-
"cell_type": "code",
|
278 |
-
"execution_count": null,
|
279 |
-
"id": "aef9070a-c87a-463e-81b8-3cc6c5c9d484",
|
280 |
-
"metadata": {},
|
281 |
-
"outputs": [],
|
282 |
-
"source": [
|
283 |
-
"%%time\n",
|
284 |
-
"tif_file = 'natcrop_expansion_100m_cog.tif'\n",
|
285 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
286 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"crop_expansion\", n_jobs=threads, verbose=0)\n",
|
287 |
-
"gpd.GeoDataFrame(df, geometry=\"geometry\").to_parquet(\"cpad-stats-temp.parquet\")\n"
|
288 |
-
]
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"cell_type": "code",
|
292 |
-
"execution_count": null,
|
293 |
-
"id": "d94f937b-b32c-4de1-b4ac-93ce33f0919f",
|
294 |
-
"metadata": {},
|
295 |
-
"outputs": [],
|
296 |
-
"source": [
|
297 |
-
"%%time\n",
|
298 |
-
"tif_file = 'natcrop_reduction_100m_cog.tif'\n",
|
299 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
300 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"crop_reduction\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
301 |
-
]
|
302 |
-
},
|
303 |
-
{
|
304 |
-
"cell_type": "code",
|
305 |
-
"execution_count": null,
|
306 |
-
"id": "6bdaba61-30c1-49d6-a4e6-db68f1daafa3",
|
307 |
-
"metadata": {},
|
308 |
-
"outputs": [],
|
309 |
-
"source": [
|
310 |
-
"%%time\n",
|
311 |
-
"tif_file = 'hfp_2021_100m_v1-2_cog.tif'\n",
|
312 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
313 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"human_impact\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
314 |
-
]
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"cell_type": "markdown",
|
318 |
-
"id": "f8e037d4-7a34-42bc-941f-0c09ee80ef3b",
|
319 |
-
"metadata": {},
|
320 |
-
"source": [
|
321 |
-
"# Need to convert SVI & Justice40 files to tif"
|
322 |
-
]
|
323 |
-
},
|
324 |
-
{
|
325 |
-
"cell_type": "code",
|
326 |
-
"execution_count": null,
|
327 |
-
"id": "c4a19013-65f1-4eef-be2d-0cf1be3d0f7f",
|
328 |
-
"metadata": {},
|
329 |
-
"outputs": [],
|
330 |
-
"source": [
|
331 |
-
"import geopandas as gpd\n",
|
332 |
-
"import numpy as np\n",
|
333 |
-
"import rasterio\n",
|
334 |
-
"from rasterio.features import rasterize\n",
|
335 |
-
"from rasterio.transform import from_bounds\n",
|
336 |
-
"\n",
|
337 |
-
"def get_geotiff(gdf, output_file,col):\n",
|
338 |
-
" gdf = gdf.set_geometry(\"geometry\")\n",
|
339 |
-
" gdf = gdf.set_crs(\"EPSG:4326\")\n",
|
340 |
-
" print(gdf.crs)\n",
|
341 |
-
"\n",
|
342 |
-
" # Set raster properties\n",
|
343 |
-
" minx, miny, maxx, maxy = gdf.total_bounds # Get the bounds of the geometry\n",
|
344 |
-
" pixel_size = 0.01 # Define the pixel size in units of the CRS\n",
|
345 |
-
" width = int((maxx - minx) / pixel_size)\n",
|
346 |
-
" height = int((maxy - miny) / pixel_size)\n",
|
347 |
-
" transform = from_bounds(minx, miny, maxx, maxy, width, height)\n",
|
348 |
-
" \n",
|
349 |
-
" # Define rasterization with continuous values\n",
|
350 |
-
" shapes = ((geom, value) for geom, value in zip(gdf.geometry, gdf[col]))\n",
|
351 |
-
" raster = rasterize(\n",
|
352 |
-
" shapes,\n",
|
353 |
-
" out_shape=(height, width),\n",
|
354 |
-
" transform=transform,\n",
|
355 |
-
" fill=0.0, # Background value for areas outside the geometry\n",
|
356 |
-
" dtype=\"float32\" # Set data type to handle continuous values\n",
|
357 |
-
" )\n",
|
358 |
-
" print(\"Unique values in raster:\", np.unique(raster))\n",
|
359 |
-
"\n",
|
360 |
-
" # Define GeoTIFF metadata\n",
|
361 |
-
" out_meta = {\n",
|
362 |
-
" \"driver\": \"GTiff\",\n",
|
363 |
-
" \"height\": height,\n",
|
364 |
-
" \"width\": width,\n",
|
365 |
-
" \"count\": 1,\n",
|
366 |
-
" \"dtype\": raster.dtype,\n",
|
367 |
-
" \"crs\": gdf.crs,\n",
|
368 |
-
" \"transform\": transform,\n",
|
369 |
-
" \"compress\": \"deflate\" # Use compression to reduce file size\n",
|
370 |
-
" }\n",
|
371 |
-
" \n",
|
372 |
-
" # Write to a GeoTIFF file with COG options\n",
|
373 |
-
" with rasterio.open(output_file, \"w\", **out_meta) as dest:\n",
|
374 |
-
" dest.write(raster, 1)\n",
|
375 |
-
" dest.build_overviews([2, 4, 8, 16], rasterio.enums.Resampling.average)\n",
|
376 |
-
" dest.update_tags(1, TIFFTAG_RESOLUTION_UNIT=\"Meter\")\n"
|
377 |
-
]
|
378 |
-
},
|
379 |
-
{
|
380 |
-
"cell_type": "markdown",
|
381 |
-
"id": "f4925a74-5ed2-49a4-845b-6a0f0398a43e",
|
382 |
-
"metadata": {},
|
383 |
-
"source": [
|
384 |
-
"# SVI"
|
385 |
-
]
|
386 |
-
},
|
387 |
-
{
|
388 |
-
"cell_type": "code",
|
389 |
-
"execution_count": null,
|
390 |
-
"id": "4e678f01-73af-4f99-a565-e9b7f04d9547",
|
391 |
-
"metadata": {},
|
392 |
-
"outputs": [],
|
393 |
-
"source": [
|
394 |
-
"# clean up SVI data\n",
|
395 |
-
"svi_df = (con\n",
|
396 |
-
" .read_parquet(\"svi2020_us_tract.parquet\")\n",
|
397 |
-
" .select(\"RPL_THEMES\",\"RPL_THEME1\",\"RPL_THEME2\",\"RPL_THEME3\",\"RPL_THEME4\",\"Shape\")\n",
|
398 |
-
" .rename(SVI = \"RPL_THEMES\", socioeconomic = \"RPL_THEME1\", \n",
|
399 |
-
" household_char = \"RPL_THEME2\", racial_ethnic_minority = \"RPL_THEME3\",\n",
|
400 |
-
" housing_transit = \"RPL_THEME4\", geometry = \"Shape\")\n",
|
401 |
-
".cast({\"geometry\":\"geometry\"})\n",
|
402 |
-
")\n",
|
403 |
-
"svi_df.execute().to_parquet(\"svi2020_us_tract_clean.parquet\")\n"
|
404 |
-
]
|
405 |
-
},
|
406 |
-
{
|
407 |
-
"cell_type": "code",
|
408 |
-
"execution_count": null,
|
409 |
-
"id": "c5046d6b-9798-46d3-a1bc-548e29414007",
|
410 |
-
"metadata": {},
|
411 |
-
"outputs": [],
|
412 |
-
"source": [
|
413 |
-
"gdf = gpd.read_parquet(\"svi2020_us_tract_clean.parquet\")\n",
|
414 |
-
"svi = gdf[['SVI','geometry']]\n",
|
415 |
-
"socio = gdf[['socioeconomic','geometry']]\n",
|
416 |
-
"house = gdf[['household_char','geometry']]\n",
|
417 |
-
"minority = gdf[['racial_ethnic_minority','geometry']]\n",
|
418 |
-
"transit = gdf[['housing_transit','geometry']]\n",
|
419 |
-
"\n",
|
420 |
-
"#convert SVI parquet to tif\n",
|
421 |
-
"get_geotiff(svi,\"svi.tif\",\"SVI\")\n",
|
422 |
-
"get_geotiff(socio,\"svi_socioeconomic.tif\",\"socioeconomic\")\n",
|
423 |
-
"get_geotiff(house,\"svi_household.tif\",\"household_char\")\n",
|
424 |
-
"get_geotiff(minority,\"svi_minority.tif\",\"racial_ethnic_minority\")\n",
|
425 |
-
"get_geotiff(transit,\"svi_transit.tif\",\"housing_transit\")"
|
426 |
-
]
|
427 |
-
},
|
428 |
-
{
|
429 |
-
"cell_type": "code",
|
430 |
-
"execution_count": null,
|
431 |
-
"id": "6a36b77f-d0be-45bd-9318-da4b57eaf353",
|
432 |
-
"metadata": {},
|
433 |
-
"outputs": [],
|
434 |
-
"source": [
|
435 |
-
"%%time\n",
|
436 |
-
"tif_file = 'svi.tif'\n",
|
437 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
438 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"SVI\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
|
439 |
-
"\n"
|
440 |
-
]
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"cell_type": "code",
|
444 |
-
"execution_count": null,
|
445 |
-
"id": "05ef74e2-3f23-4f69-8cd3-8862cb73a259",
|
446 |
-
"metadata": {},
|
447 |
-
"outputs": [],
|
448 |
-
"source": [
|
449 |
-
"%%time\n",
|
450 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
451 |
-
"tif_file = 'svi_socioeconomic.tif'\n",
|
452 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"socioeconomic_status\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
|
453 |
-
"\n"
|
454 |
-
]
|
455 |
-
},
|
456 |
-
{
|
457 |
-
"cell_type": "code",
|
458 |
-
"execution_count": null,
|
459 |
-
"id": "23417a03-38c2-4b31-8340-f08ec8a11631",
|
460 |
-
"metadata": {},
|
461 |
-
"outputs": [],
|
462 |
-
"source": [
|
463 |
-
"%%time\n",
|
464 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
465 |
-
"tif_file = 'svi_household.tif'\n",
|
466 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"household_char\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
|
467 |
-
"\n"
|
468 |
-
]
|
469 |
-
},
|
470 |
-
{
|
471 |
-
"cell_type": "code",
|
472 |
-
"execution_count": null,
|
473 |
-
"id": "de86d7f0-6cdc-4d05-bdee-d9803cbd83bd",
|
474 |
-
"metadata": {},
|
475 |
-
"outputs": [],
|
476 |
-
"source": [
|
477 |
-
"%%time\n",
|
478 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
479 |
-
"tif_file = 'svi_minority.tif'\n",
|
480 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"racial_ethnic_minority\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
481 |
-
]
|
482 |
-
},
|
483 |
-
{
|
484 |
-
"cell_type": "code",
|
485 |
-
"execution_count": null,
|
486 |
-
"id": "0c49dd50-7dd3-4240-9af8-3e32ec656bc0",
|
487 |
-
"metadata": {},
|
488 |
-
"outputs": [],
|
489 |
-
"source": [
|
490 |
-
"%%time\n",
|
491 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
492 |
-
"tif_file = 'svi_transit.tif'\n",
|
493 |
-
"df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"housing_transit\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
|
494 |
-
]
|
495 |
-
},
|
496 |
-
{
|
497 |
-
"cell_type": "markdown",
|
498 |
-
"id": "ff4b6604-9828-4882-90bd-554c21f5c6e6",
|
499 |
-
"metadata": {},
|
500 |
-
"source": [
|
501 |
-
"# Justice40 "
|
502 |
-
]
|
503 |
-
},
|
504 |
-
{
|
505 |
-
"cell_type": "code",
|
506 |
-
"execution_count": null,
|
507 |
-
"id": "3678a91f-72f7-4339-a409-a97776cba043",
|
508 |
-
"metadata": {},
|
509 |
-
"outputs": [],
|
510 |
-
"source": [
|
511 |
-
"#clean up\n",
|
512 |
-
"justice40 = (con\n",
|
513 |
-
" .read_parquet(\"disadvantaged-communities.parquet\")\n",
|
514 |
-
" .rename(geometry = \"SHAPE\",justice40=\"Disadvan\")\n",
|
515 |
-
" .filter(_.StateName == \"California\")\n",
|
516 |
-
" .mutate(geometry = _.geometry.convert(\"ESRI:102039\",\"EPSG:4326\"))\n",
|
517 |
-
" .select(\"justice40\",\"geometry\")\n",
|
518 |
-
" )\n",
|
519 |
-
"justice40.execute().to_parquet(\"ca_justice40.parquet\")"
|
520 |
-
]
|
521 |
-
},
|
522 |
-
{
|
523 |
-
"cell_type": "code",
|
524 |
-
"execution_count": null,
|
525 |
-
"id": "8faa425f-6f9c-4189-a53a-24dd0250c539",
|
526 |
-
"metadata": {},
|
527 |
-
"outputs": [],
|
528 |
-
"source": [
|
529 |
-
"# #justice40 is either 0 or 1, so we want to get the percentage of polygon where justice40 = 1. \n",
|
530 |
-
"\n",
|
531 |
-
"def big_zonal_stats_binary(vec_file, justice40_file, col_name,projected_crs=\"EPSG:3310\"):\n",
|
532 |
-
" # Read both vector files as GeoDataFrames\n",
|
533 |
-
" gdf = gpd.read_parquet(vec_file)\n",
|
534 |
-
" justice40_gdf = gpd.read_parquet(justice40_file)\n",
|
535 |
-
" \n",
|
536 |
-
" # Set CRS if not already set (assuming both should be in EPSG:4326, modify if needed)\n",
|
537 |
-
" if gdf.crs is None:\n",
|
538 |
-
" gdf = gdf.set_crs(\"EPSG:4326\")\n",
|
539 |
-
" if justice40_gdf.crs is None:\n",
|
540 |
-
" justice40_gdf = justice40_gdf.set_crs(\"EPSG:4326\")\n",
|
541 |
-
" # Ensure both GeoDataFrames are in the same CRS and reproject to a projected CRS for area calculations\n",
|
542 |
-
" gdf = gdf.to_crs(projected_crs)\n",
|
543 |
-
" justice40_gdf = justice40_gdf.to_crs(projected_crs)\n",
|
544 |
-
" \n",
|
545 |
-
" # Ensure both GeoDataFrames are in the same CRS\n",
|
546 |
-
" gdf = gdf.to_crs(justice40_gdf.crs)\n",
|
547 |
-
" \n",
|
548 |
-
" # Filter justice40 polygons where justice40 == 1\n",
|
549 |
-
" justice40_gdf = justice40_gdf[justice40_gdf['justice40'] == 1].copy()\n",
|
550 |
-
" \n",
|
551 |
-
" # Prepare a list to hold percentage of justice40 == 1 for each polygon\n",
|
552 |
-
" percentages = []\n",
|
553 |
-
" \n",
|
554 |
-
" # Iterate over each polygon in the main GeoDataFrame\n",
|
555 |
-
" for geom in gdf.geometry:\n",
|
556 |
-
" # Find intersecting justice40 polygons\n",
|
557 |
-
" justice40_intersections = justice40_gdf[justice40_gdf.intersects(geom)].copy()\n",
|
558 |
-
" \n",
|
559 |
-
" # Calculate the intersection area\n",
|
560 |
-
" if not justice40_intersections.empty:\n",
|
561 |
-
" justice40_intersections['intersection'] = justice40_intersections.intersection(geom)\n",
|
562 |
-
" total_intersection_area = justice40_intersections['intersection'].area.sum()\n",
|
563 |
-
" \n",
|
564 |
-
" # Calculate percentage based on original polygon's area\n",
|
565 |
-
" percentage_1 = (total_intersection_area / geom.area) \n",
|
566 |
-
" else:\n",
|
567 |
-
" percentage_1 = 0.0 # No intersection with justice40 == 1 polygons\n",
|
568 |
-
" \n",
|
569 |
-
" # Append result\n",
|
570 |
-
" percentages.append(percentage_1)\n",
|
571 |
-
" \n",
|
572 |
-
" # Add results to the original GeoDataFrame\n",
|
573 |
-
" gdf[col_name] = percentages\n",
|
574 |
-
" return gdf\n",
|
575 |
-
"\n",
|
576 |
-
"\n"
|
577 |
-
]
|
578 |
-
},
|
579 |
-
{
|
580 |
-
"cell_type": "code",
|
581 |
-
"execution_count": null,
|
582 |
-
"id": "fe80fc28-73ce-4a26-9925-851c2798e467",
|
583 |
-
"metadata": {},
|
584 |
-
"outputs": [],
|
585 |
-
"source": [
|
586 |
-
"%%time\n",
|
587 |
-
"vec_file = './cpad-stats-temp.parquet'\n",
|
588 |
-
"\n",
|
589 |
-
"df = big_zonal_stats_binary(vec_file, \"ca_justice40.parquet\", col_name=\"percent_disadvantaged\")\n",
|
590 |
-
"df.to_parquet(\"cpad-stats-temp.parquet\")\n"
|
591 |
-
]
|
592 |
-
},
|
593 |
-
{
|
594 |
-
"cell_type": "markdown",
|
595 |
-
"id": "5438a4f4-377e-41fe-800b-8ffc1f33caa0",
|
596 |
-
"metadata": {},
|
597 |
-
"source": [
|
598 |
-
"# Fire"
|
599 |
-
]
|
600 |
-
},
|
601 |
-
{
|
602 |
-
"cell_type": "code",
|
603 |
-
"execution_count": null,
|
604 |
-
"id": "4bd83b4d-01df-49d8-99e1-6740d365c833",
|
605 |
-
"metadata": {},
|
606 |
-
"outputs": [],
|
607 |
-
"source": [
|
608 |
-
"import geopandas as gpd\n",
|
609 |
-
"\n",
|
610 |
-
"#get percentage of polygon with fire occurrence \n",
|
611 |
-
"def fire_stats(file_name, fire_df, col_name):\n",
|
612 |
-
" gdf = gpd.read_parquet(file_name)\n",
|
613 |
-
" \n",
|
614 |
-
" percentages = []\n",
|
615 |
-
" # Find all fires that intersect with the current protected area \n",
|
616 |
-
" for geom in gdf.geometry:\n",
|
617 |
-
" fire_intersections = fire_df[fire_df.intersects(geom)].copy()\n",
|
618 |
-
" if not fire_intersections.empty:\n",
|
619 |
-
" # If there is only one intersecting fire, compute the intersection area\n",
|
620 |
-
" if len(fire_intersections) == 1:\n",
|
621 |
-
" intersection_area = fire_intersections.geometry.iloc[0].intersection(geom).area\n",
|
622 |
-
" else:\n",
|
623 |
-
" # If there are multiple intersecting fires, use a union to avoid double-counting\n",
|
624 |
-
" unioned_fires = fire_intersections.unary_union\n",
|
625 |
-
" intersection_area = unioned_fires.intersection(geom).area\n",
|
626 |
-
" \n",
|
627 |
-
" percentage_1 = round((intersection_area / geom.area),3)\n",
|
628 |
-
" else:\n",
|
629 |
-
" percentage_1 = 0.0 \n",
|
630 |
-
"\n",
|
631 |
-
" percentages.append(percentage_1)\n",
|
632 |
-
" \n",
|
633 |
-
" gdf[col_name] = percentages\n",
|
634 |
-
" return gdf\n"
|
635 |
-
]
|
636 |
-
},
|
637 |
-
{
|
638 |
-
"cell_type": "code",
|
639 |
-
"execution_count": null,
|
640 |
-
"id": "4ce35cea-8897-42c0-b1f6-01b414a5b556",
|
641 |
-
"metadata": {},
|
642 |
-
"outputs": [],
|
643 |
-
"source": [
|
644 |
-
"#historical fire perimeters \n",
|
645 |
-
"fire_20 = (con\n",
|
646 |
-
" .read_parquet(\"firep22_1.parquet\")\n",
|
647 |
-
" .rename(year = \"YEAR_\")\n",
|
648 |
-
" .filter(_.STATE == \"CA\", _.year != '')\n",
|
649 |
-
" .cast({\"year\":\"int\"})\n",
|
650 |
-
" .filter(_.year>=2003)\n",
|
651 |
-
" .select(\"year\",\"geometry\")\n",
|
652 |
-
" .mutate(\n",
|
653 |
-
" geometry=ibis.ifelse(\n",
|
654 |
-
" _.geometry.is_valid(),\n",
|
655 |
-
" _.geometry, # Keep the geometry if it's valid\n",
|
656 |
-
" _.geometry.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
|
657 |
-
" )\n",
|
658 |
-
" )\n",
|
659 |
-
" )\n",
|
660 |
-
"fire_20.execute().to_parquet(\"ca-fire-20yrs.parquet\")\n",
|
661 |
-
"fire_10 = fire_20.filter(_.year>=2013)\n",
|
662 |
-
"fire_5 = fire_20.filter(_.year>=2018)\n",
|
663 |
-
"fire_2 = fire_20.filter(_.year>=2022)\n",
|
664 |
-
"\n",
|
665 |
-
"\n",
|
666 |
-
"fire_20_df = fire_20.execute().set_crs(\"EPSG:3310\")\n",
|
667 |
-
"fire_10_df = fire_10.execute().set_crs(\"EPSG:3310\")\n",
|
668 |
-
"fire_5_df = fire_5.execute().set_crs(\"EPSG:3310\")\n",
|
669 |
-
"fire_2_df = fire_2.execute().set_crs(\"EPSG:3310\")\n"
|
670 |
-
]
|
671 |
-
},
|
672 |
-
{
|
673 |
-
"cell_type": "code",
|
674 |
-
"execution_count": null,
|
675 |
-
"id": "0a041210-6ffe-49b0-b4a7-3a9220acedb9",
|
676 |
-
"metadata": {},
|
677 |
-
"outputs": [],
|
678 |
-
"source": [
|
679 |
-
"#prescribed burns\n",
|
680 |
-
"rxburn_20 = (con\n",
|
681 |
-
" .read_parquet(\"rxburn22_1.parquet\")\n",
|
682 |
-
" .rename(year = \"YEAR_\")\n",
|
683 |
-
" .filter(_.STATE == \"CA\", _.year != ' ', _.year != '')\n",
|
684 |
-
" .cast({\"year\":\"int\"})\n",
|
685 |
-
" .filter(_.year>=2003)\n",
|
686 |
-
" .select(\"year\",\"geometry\")\n",
|
687 |
-
" .mutate(\n",
|
688 |
-
" geometry=ibis.ifelse(\n",
|
689 |
-
" _.geometry.is_valid(),\n",
|
690 |
-
" _.geometry, # Keep the geometry if it's valid\n",
|
691 |
-
" _.geometry.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
|
692 |
-
" )\n",
|
693 |
-
" )\n",
|
694 |
-
" )\n",
|
695 |
-
"\n",
|
696 |
-
"rxburn_20.execute().to_parquet(\"ca-rxburn-20yrs.parquet\")\n",
|
697 |
-
"rxburn_10 = (rxburn_20.filter(_.year>=2013))\n",
|
698 |
-
"rxburn_5 = (rxburn_20.filter(_.year>=2018))\n",
|
699 |
-
"rxburn_2 = (rxburn_20.filter(_.year>=2022))\n",
|
700 |
-
"\n",
|
701 |
-
"rxburn_20_df = rxburn_20.execute().set_crs(\"EPSG:3310\")\n",
|
702 |
-
"rxburn_10_df = rxburn_10.execute().set_crs(\"EPSG:3310\")\n",
|
703 |
-
"rxburn_5_df = rxburn_5.execute().set_crs(\"EPSG:3310\")\n",
|
704 |
-
"rxburn_2_df = rxburn_2.execute().set_crs(\"EPSG:3310\")"
|
705 |
-
]
|
706 |
-
},
|
707 |
-
{
|
708 |
-
"cell_type": "code",
|
709 |
-
"execution_count": null,
|
710 |
-
"id": "fc955b02-efc1-4ae3-b8e4-ea424d491a68",
|
711 |
-
"metadata": {},
|
712 |
-
"outputs": [],
|
713 |
-
"source": [
|
714 |
-
"# need to validate geometries, using epsg:3310 to match fire polygons\n",
|
715 |
-
"ca = (con\n",
|
716 |
-
" .read_parquet('cpad-stats-temp.parquet')\n",
|
717 |
-
" .mutate(geom = _.geom.convert(\"EPSG:4326\",\"EPSG:3310\"))\n",
|
718 |
-
" .mutate(\n",
|
719 |
-
" geometry=ibis.ifelse(\n",
|
720 |
-
" _.geom.is_valid(),\n",
|
721 |
-
" _.geom, # Keep the geometry if it's valid\n",
|
722 |
-
" _.geom.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
|
723 |
-
" )\n",
|
724 |
-
" )\n",
|
725 |
-
" .drop('geom')\n",
|
726 |
-
" )\n",
|
727 |
-
"gdf = ca.execute()\n",
|
728 |
-
"gdf = gdf.set_crs('EPSG:3310')\n",
|
729 |
-
"gdf.to_parquet('cpad-stats-temp-EPSG3310.parquet')\n"
|
730 |
-
]
|
731 |
-
},
|
732 |
-
{
|
733 |
-
"cell_type": "code",
|
734 |
-
"execution_count": null,
|
735 |
-
"id": "68e25266-efc8-4378-afc5-95c7a769ca81",
|
736 |
-
"metadata": {},
|
737 |
-
"outputs": [],
|
738 |
-
"source": [
|
739 |
-
"%%time\n",
|
740 |
-
"file_name = 'cpad-stats-temp-EPSG3310.parquet'\n",
|
741 |
-
"\n",
|
742 |
-
"names = [\"percent_fire_20yr\", \"percent_fire_10yr\", \"percent_fire_5yr\",\n",
|
743 |
-
" \"percent_fire_2yr\",\"percent_rxburn_20yr\", \"percent_rxburn_10yr\", \n",
|
744 |
-
" \"percent_rxburn_5yr\",\"percent_rxburn_2yr\"]\n",
|
745 |
-
"dfs = [fire_20_df,fire_10_df,fire_5_df,fire_2_df,rxburn_20_df,rxburn_10_df,rxburn_5_df,rxburn_2_df]\n",
|
746 |
-
"\n",
|
747 |
-
"for df,name in zip(dfs,names):\n",
|
748 |
-
" df_stat = fire_stats(file_name,df, col_name=name)\n",
|
749 |
-
" df_stat.to_parquet(file_name)"
|
750 |
-
]
|
751 |
-
},
|
752 |
-
{
|
753 |
-
"cell_type": "code",
|
754 |
-
"execution_count": null,
|
755 |
-
"id": "cd4acb35-d1a3-4632-ae30-c6e3e923e94c",
|
756 |
-
"metadata": {},
|
757 |
-
"outputs": [],
|
758 |
-
"source": [
|
759 |
-
"#save data back to cpad-stats-temp\n",
|
760 |
-
"# (not really necessary but I want to reuse the same code)\n",
|
761 |
-
"ca = (con\n",
|
762 |
-
" .read_parquet(file_name)\n",
|
763 |
-
" .mutate(geometry = _.geometry.convert(\"EPSG:3310\",\"EPSG:4326\"))\n",
|
764 |
-
" )\n",
|
765 |
-
"gdf = ca.execute()\n",
|
766 |
-
"gdf= gdf.set_crs('EPSG:4326')\n",
|
767 |
-
"gdf.to_parquet(\"cpad-stats-temp.parquet\")\n",
|
768 |
-
"\n"
|
769 |
-
]
|
770 |
-
},
|
771 |
-
{
|
772 |
-
"cell_type": "markdown",
|
773 |
-
"id": "e3083b85-1322-4188-ac08-e73c2570978c",
|
774 |
-
"metadata": {},
|
775 |
-
"source": [
|
776 |
-
"# Cleaning up + Rounding floats"
|
777 |
-
]
|
778 |
-
},
|
779 |
-
{
|
780 |
-
"cell_type": "code",
|
781 |
-
"execution_count": null,
|
782 |
-
"id": "2e4de199-82d4-4e2b-8572-6fe19b57d1ee",
|
783 |
-
"metadata": {},
|
784 |
-
"outputs": [],
|
785 |
-
"source": [
|
786 |
-
"## clean up\n",
|
787 |
-
"con = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
|
788 |
-
"ca_geom = con.read_parquet(\"ca2024-30m.parquet\").cast({\"geom\":\"geometry\"}).select(\"id\",\"geom\")\n",
|
789 |
-
"\n",
|
790 |
-
"ca = (con\n",
|
791 |
-
" .read_parquet(\"cpad-stats-temp.parquet\")\n",
|
792 |
-
" .cast({\n",
|
793 |
-
" \"crop_expansion\": \"int64\",\n",
|
794 |
-
" \"crop_reduction\": \"int64\",\n",
|
795 |
-
" \"manageable_carbon\": \"int64\",\n",
|
796 |
-
" \"irrecoverable_carbon\": \"int64\"\n",
|
797 |
-
" })\n",
|
798 |
-
" .mutate(\n",
|
799 |
-
" richness=_.richness.round(3),\n",
|
800 |
-
" rsr=_.rsr.round(3),\n",
|
801 |
-
" all_species_rwr=_.all_species_rwr.round(3),\n",
|
802 |
-
" all_species_richness=_.all_species_richness.round(3),\n",
|
803 |
-
" percent_disadvantaged=(_.percent_disadvantaged).round(3),\n",
|
804 |
-
" svi=_.svi.round(3),\n",
|
805 |
-
" svi_socioeconomic_status=_.socioeconomic_status.round(3),\n",
|
806 |
-
" svi_household_char=_.household_char.round(3),\n",
|
807 |
-
" svi_racial_ethnic_minority=_.racial_ethnic_minority.round(3),\n",
|
808 |
-
" svi_housing_transit=_.housing_transit.round(3),\n",
|
809 |
-
" human_impact=_.human_impact.round(3),\n",
|
810 |
-
" deforest_carbon=_.deforest_carbon.round(3),\n",
|
811 |
-
" biodiversity_intactness_loss=_.biodiversity_intactness_loss.round(3),\n",
|
812 |
-
" forest_integrity_loss=_.forest_integrity_loss.round(3),\n",
|
813 |
-
" percent_fire_20yr = _.percent_fire_20yr.round(3),\n",
|
814 |
-
" percent_fire_10yr = _.percent_fire_10yr.round(3),\n",
|
815 |
-
" percent_fire_5yr = _.percent_fire_5yr.round(3),\n",
|
816 |
-
" percent_fire_2yr = _.percent_fire_2yr.round(3),\n",
|
817 |
-
" percent_rxburn_20yr = _.percent_rxburn_20yr.round(3),\n",
|
818 |
-
" percent_rxburn_10yr = _.percent_rxburn_10yr.round(3),\n",
|
819 |
-
" percent_rxburn_5yr = _.percent_rxburn_5yr.round(3),\n",
|
820 |
-
" percent_rxburn_2yr = _.percent_rxburn_2yr.round(3),\n",
|
821 |
-
" )\n",
|
822 |
-
" # only grabbing columns we are making charts with \n",
|
823 |
-
" .select('established', 'reGAP', 'name', 'access_type', 'manager', 'manager_type', 'Easement', 'Acres', 'id', 'type','richness', \n",
|
824 |
-
" 'rsr', 'irrecoverable_carbon', 'manageable_carbon', 'percent_fire_20yr', 'percent_fire_10yr', 'percent_fire_5yr','percent_fire_2yr',\n",
|
825 |
-
" 'percent_rxburn_20yr', 'percent_rxburn_10yr', 'percent_rxburn_5yr','percent_rxburn_2yr', 'percent_disadvantaged',\n",
|
826 |
-
" 'svi', 'svi_socioeconomic_status', 'svi_household_char', 'svi_racial_ethnic_minority',\n",
|
827 |
-
" 'svi_housing_transit', 'deforest_carbon','human_impact'\n",
|
828 |
-
" )\n",
|
829 |
-
" .join(ca_geom, \"id\", how=\"inner\")\n",
|
830 |
-
" )\n",
|
831 |
-
"\n",
|
832 |
-
"ca.head(5).execute()\n"
|
833 |
-
]
|
834 |
-
},
|
835 |
-
{
|
836 |
-
"cell_type": "markdown",
|
837 |
-
"id": "3780de2c-3a68-442c-bb3b-64c792418979",
|
838 |
-
"metadata": {},
|
839 |
-
"source": [
|
840 |
-
"# Save as PMTiles + Upload data"
|
841 |
-
]
|
842 |
-
},
|
843 |
-
{
|
844 |
-
"cell_type": "code",
|
845 |
-
"execution_count": null,
|
846 |
-
"id": "05c791c9-888a-483a-9dbb-a2ba7eb1bce2",
|
847 |
-
"metadata": {},
|
848 |
-
"outputs": [],
|
849 |
-
"source": [
|
850 |
-
"import subprocess\n",
|
851 |
-
"import os\n",
|
852 |
-
"from huggingface_hub import HfApi, login\n",
|
853 |
-
"import streamlit as st\n",
|
854 |
-
"\n",
|
855 |
-
"login(st.secrets[\"HF_TOKEN\"])\n",
|
856 |
-
"# api = HfApi(add_to_git_credential=False)\n",
|
857 |
-
"api = HfApi()\n",
|
858 |
-
"\n",
|
859 |
-
"def hf_upload(file, repo_id,repo_type):\n",
|
860 |
-
" info = api.upload_file(\n",
|
861 |
-
" path_or_fileobj=file,\n",
|
862 |
-
" path_in_repo=file,\n",
|
863 |
-
" repo_id=repo_id,\n",
|
864 |
-
" repo_type=repo_type,\n",
|
865 |
-
" )\n",
|
866 |
-
"def generate_pmtiles(input_file, output_file, max_zoom=12):\n",
|
867 |
-
" # Ensure Tippecanoe is installed\n",
|
868 |
-
" if subprocess.call([\"which\", \"tippecanoe\"], stdout=subprocess.DEVNULL) != 0:\n",
|
869 |
-
" raise RuntimeError(\"Tippecanoe is not installed or not in PATH\")\n",
|
870 |
-
"\n",
|
871 |
-
" # Construct the Tippecanoe command\n",
|
872 |
-
" command = [\n",
|
873 |
-
" \"tippecanoe\",\n",
|
874 |
-
" \"-o\", output_file,\n",
|
875 |
-
" \"-zg\",\n",
|
876 |
-
" \"--extend-zooms-if-still-dropping\",\n",
|
877 |
-
" \"--force\",\n",
|
878 |
-
" \"--projection\", \"EPSG:4326\", \n",
|
879 |
-
" \"-L\",\"layer:\"+input_file,\n",
|
880 |
-
" ]\n",
|
881 |
-
" # Run Tippecanoe\n",
|
882 |
-
" try:\n",
|
883 |
-
" subprocess.run(command, check=True)\n",
|
884 |
-
" print(f\"Successfully generated PMTiles file: {output_file}\")\n",
|
885 |
-
" except subprocess.CalledProcessError as e:\n",
|
886 |
-
" print(f\"Error running Tippecanoe: {e}\")\n",
|
887 |
-
"\n"
|
888 |
-
]
|
889 |
-
},
|
890 |
-
{
|
891 |
-
"cell_type": "code",
|
892 |
-
"execution_count": null,
|
893 |
-
"id": "1f2d179d-6d47-4e84-83c6-7cb3d969fc00",
|
894 |
-
"metadata": {},
|
895 |
-
"outputs": [],
|
896 |
-
"source": [
|
897 |
-
"gdf = ca.execute().set_crs(\"EPSG:4326\")\n",
|
898 |
-
"gdf.to_file(\"cpad-stats.geojson\")\n",
|
899 |
-
"\n",
|
900 |
-
"generate_pmtiles(\"cpad-stats.geojson\", \"cpad-stats.pmtiles\")\n",
|
901 |
-
"hf_upload(\"cpad-stats.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n",
|
902 |
-
"\n",
|
903 |
-
"gdf.to_parquet(\"cpad-stats.parquet\")\n",
|
904 |
-
"hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"dataset\")\n",
|
905 |
-
"hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"space\")\n",
|
906 |
-
"\n"
|
907 |
-
]
|
908 |
-
},
|
909 |
-
{
|
910 |
-
"cell_type": "markdown",
|
911 |
-
"id": "09467342-c160-413b-9cdc-31a4bec968cf",
|
912 |
-
"metadata": {},
|
913 |
-
"source": [
|
914 |
-
"# Redoing fire polygons pmtiles to have each range be its own layer "
|
915 |
-
]
|
916 |
-
},
|
917 |
-
{
|
918 |
-
"cell_type": "code",
|
919 |
-
"execution_count": null,
|
920 |
-
"id": "2161c50b-0328-474f-aa57-215e14fe33c2",
|
921 |
-
"metadata": {},
|
922 |
-
"outputs": [],
|
923 |
-
"source": [
|
924 |
-
"def generate_pmtiles(input_file1, input_file2, input_file3, input_file4, output_file, max_zoom=12):\n",
|
925 |
-
" # Ensure Tippecanoe is installed\n",
|
926 |
-
" if subprocess.call([\"which\", \"tippecanoe\"], stdout=subprocess.DEVNULL) != 0:\n",
|
927 |
-
" raise RuntimeError(\"Tippecanoe is not installed or not in PATH\")\n",
|
928 |
-
"\n",
|
929 |
-
" # Construct the Tippecanoe command\n",
|
930 |
-
" command = [\n",
|
931 |
-
" \"tippecanoe\",\n",
|
932 |
-
" \"-o\", output_file,\n",
|
933 |
-
" \"-zg\",\n",
|
934 |
-
" \"--extend-zooms-if-still-dropping\",\n",
|
935 |
-
" \"--force\",\n",
|
936 |
-
" \"--projection\", \"EPSG:4326\", \n",
|
937 |
-
" \"-L\",\"layer1:\"+input_file1,\n",
|
938 |
-
" \"-L\",\"layer2:\"+input_file2,\n",
|
939 |
-
" \"-L\",\"layer3:\"+input_file3,\n",
|
940 |
-
" \"-L\",\"layer4:\"+input_file4,\n",
|
941 |
-
"\n",
|
942 |
-
" ]\n",
|
943 |
-
" # Run Tippecanoe\n",
|
944 |
-
" try:\n",
|
945 |
-
" subprocess.run(command, check=True)\n",
|
946 |
-
" print(f\"Successfully generated PMTiles file: {output_file}\")\n",
|
947 |
-
" except subprocess.CalledProcessError as e:\n",
|
948 |
-
" print(f\"Error running Tippecanoe: {e}\")\n"
|
949 |
-
]
|
950 |
-
},
|
951 |
-
{
|
952 |
-
"cell_type": "code",
|
953 |
-
"execution_count": null,
|
954 |
-
"id": "3a15d11f-ef32-4af3-8b72-b43acd43cf08",
|
955 |
-
"metadata": {},
|
956 |
-
"outputs": [],
|
957 |
-
"source": [
|
958 |
-
"rxburn_20 = (con\n",
|
959 |
-
" .read_parquet(\"rxburn22_1.parquet\")\n",
|
960 |
-
" .rename(year = \"YEAR_\")\n",
|
961 |
-
" .filter(_.STATE == \"CA\", _.year != ' ', _.year != '')\n",
|
962 |
-
" .cast({\"year\":\"int\"})\n",
|
963 |
-
" .filter(_.year>=2003)\n",
|
964 |
-
" .mutate(\n",
|
965 |
-
" geometry=ibis.ifelse(\n",
|
966 |
-
" _.geometry.is_valid(),\n",
|
967 |
-
" _.geometry, # Keep the geometry if it's valid\n",
|
968 |
-
" _.geometry.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
|
969 |
-
" )\n",
|
970 |
-
" )\n",
|
971 |
-
" .mutate(geometry = _.geometry.convert(\"EPSG:3310\",\"EPSG:4326\"))\n",
|
972 |
-
" )\n",
|
973 |
-
"\n",
|
974 |
-
"rxburn_10 = (rxburn_20.filter(_.year>=2013))\n",
|
975 |
-
"rxburn_5 = (rxburn_20.filter(_.year>=2018))\n",
|
976 |
-
"rxburn_2 = (rxburn_20.filter(_.year>=2022))\n",
|
977 |
-
"\n",
|
978 |
-
"rxburn_20_df = rxburn_20.execute().set_crs(\"EPSG:4326\").to_file(\"rxburn_20.geojson\")\n",
|
979 |
-
"rxburn_10_df = rxburn_10.execute().set_crs(\"EPSG:4326\").to_file(\"rxburn_10.geojson\")\n",
|
980 |
-
"rxburn_5_df = rxburn_5.execute().set_crs(\"EPSG:4326\").to_file(\"rxburn_5.geojson\")\n",
|
981 |
-
"rxburn_2_df = rxburn_2.execute().set_crs(\"EPSG:4326\").to_file(\"rxburn_2.geojson\")\n",
|
982 |
-
"\n",
|
983 |
-
"\n",
|
984 |
-
"generate_pmtiles(\"rxburn_20.geojson\",\"rxburn_10.geojson\",\"rxburn_5.geojson\",\"rxburn_2.geojson\",\"cal_rxburn_2022.pmtiles\")\n",
|
985 |
-
"hf_upload(\"cal_rxburn_2022.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n"
|
986 |
-
]
|
987 |
-
},
|
988 |
-
{
|
989 |
-
"cell_type": "code",
|
990 |
-
"execution_count": null,
|
991 |
-
"id": "1220c348-c68b-4475-ba0f-ef563fea7345",
|
992 |
-
"metadata": {},
|
993 |
-
"outputs": [],
|
994 |
-
"source": [
|
995 |
-
"fire_20 = (con\n",
|
996 |
-
" .read_parquet(\"firep22_1.parquet\")\n",
|
997 |
-
" .rename(year = \"YEAR_\")\n",
|
998 |
-
" .filter(_.STATE == \"CA\", _.year != '')\n",
|
999 |
-
" .cast({\"year\":\"int\"})\n",
|
1000 |
-
" .filter(_.year>=2003)\n",
|
1001 |
-
" .select(\"year\",\"geometry\")\n",
|
1002 |
-
" .mutate(\n",
|
1003 |
-
" geometry=ibis.ifelse(\n",
|
1004 |
-
" _.geometry.is_valid(),\n",
|
1005 |
-
" _.geometry, # Keep the geometry if it's valid\n",
|
1006 |
-
" _.geometry.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
|
1007 |
-
" )\n",
|
1008 |
-
" )\n",
|
1009 |
-
" .mutate(geometry = _.geometry.convert(\"EPSG:3310\",\"EPSG:4326\"))\n",
|
1010 |
-
" )\n",
|
1011 |
-
"\n",
|
1012 |
-
"fire_10 = (fire_20.filter(_.year>=2013))\n",
|
1013 |
-
"fire_5 = (fire_20.filter(_.year>=2018))\n",
|
1014 |
-
"fire_2 = (fire_20.filter(_.year>=2022))\n",
|
1015 |
-
"\n",
|
1016 |
-
"fire_20_df = fire_20.execute().set_crs(\"EPSG:4326\").to_file(\"fire_20.geojson\")\n",
|
1017 |
-
"fire_10_df = fire_10.execute().set_crs(\"EPSG:4326\").to_file(\"fire_10.geojson\")\n",
|
1018 |
-
"fire_5_df = fire_5.execute().set_crs(\"EPSG:4326\").to_file(\"fire_5.geojson\")\n",
|
1019 |
-
"fire_2_df = fire_2.execute().set_crs(\"EPSG:4326\").to_file(\"fire_2.geojson\")\n",
|
1020 |
-
"\n",
|
1021 |
-
"\n",
|
1022 |
-
"generate_pmtiles(\"fire_20.geojson\",\"fire_10.geojson\",\"fire_5.geojson\",\"fire_2.geojson\",\"cal_fire_2022.pmtiles\")\n",
|
1023 |
-
"hf_upload(\"cal_fire_2022.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n"
|
1024 |
-
]
|
1025 |
-
},
|
1026 |
-
{
|
1027 |
-
"cell_type": "markdown",
|
1028 |
-
"id": "41ddf636-812e-4f0d-81db-64cf80cb2d4d",
|
1029 |
-
"metadata": {},
|
1030 |
-
"source": [
|
1031 |
-
"# Renaming variables, adding new columns, etc"
|
1032 |
-
]
|
1033 |
-
},
|
1034 |
-
{
|
1035 |
-
"cell_type": "code",
|
1036 |
-
"execution_count": null,
|
1037 |
-
"id": "8eb85005-856f-4cc5-ba8d-e3efb24cdb32",
|
1038 |
-
"metadata": {},
|
1039 |
-
"outputs": [],
|
1040 |
-
"source": [
|
1041 |
-
"ca = (con\n",
|
1042 |
-
" .read_parquet(\"https://huggingface.co/spaces/boettiger-lab/ca-30x30/resolve/main/cpad-stats.parquet\")\n",
|
1043 |
-
" .rename(easement = \"Easement\")\n",
|
1044 |
-
" .rename(acres = \"Acres\")\n",
|
1045 |
-
" .drop('percent_fire_20yr', 'percent_fire_5yr','percent_fire_2yr','percent_rxburn_20yr', 'percent_rxburn_5yr','percent_rxburn_2yr')\n",
|
1046 |
-
" .cast({\"established\":\"str\"})\n",
|
1047 |
-
" .mutate(easement = _.easement.substitute({\"Easement\": \"True\", \"Fee\":\"False\"}),\n",
|
1048 |
-
" established = _.established.substitute({\"2023\": \"pre-2024\" }),\n",
|
1049 |
-
" )\n",
|
1050 |
-
" )"
|
1051 |
-
]
|
1052 |
-
},
|
1053 |
-
{
|
1054 |
-
"cell_type": "code",
|
1055 |
-
"execution_count": null,
|
1056 |
-
"id": "78eef2b6-5f34-49b6-937e-4744fd64cea8",
|
1057 |
-
"metadata": {},
|
1058 |
-
"outputs": [],
|
1059 |
-
"source": [
|
1060 |
-
"hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"space\")\n"
|
1061 |
-
]
|
1062 |
-
},
|
1063 |
-
{
|
1064 |
-
"cell_type": "code",
|
1065 |
-
"execution_count": null,
|
1066 |
-
"id": "652152fd-da31-44a0-bc50-9d3aa0fe6491",
|
1067 |
-
"metadata": {},
|
1068 |
-
"outputs": [],
|
1069 |
-
"source": [
|
1070 |
-
"gdf = ca.execute().set_crs(\"EPSG:4326\")\n",
|
1071 |
-
"gdf.to_parquet(\"cpad-stats.parquet\")\n",
|
1072 |
-
"# hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"dataset\")\n",
|
1073 |
-
"hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"space\")\n",
|
1074 |
-
"\n",
|
1075 |
-
"\n"
|
1076 |
-
]
|
1077 |
-
},
|
1078 |
-
{
|
1079 |
-
"cell_type": "code",
|
1080 |
-
"execution_count": null,
|
1081 |
-
"id": "80537a24-da0c-4016-9d8b-736bce30eb40",
|
1082 |
-
"metadata": {},
|
1083 |
-
"outputs": [],
|
1084 |
-
"source": [
|
1085 |
-
"gdf.to_file(\"cpad-stats.geojson\")\n",
|
1086 |
-
"generate_pmtiles(\"cpad-stats.geojson\",\"cpad-stats.pmtiles\")\n",
|
1087 |
-
"hf_upload(\"cpad-stats.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n"
|
1088 |
-
]
|
1089 |
-
},
|
1090 |
-
{
|
1091 |
-
"cell_type": "code",
|
1092 |
-
"execution_count": null,
|
1093 |
-
"id": "b0a5521b-8159-495b-a9a1-b78574fe2ceb",
|
1094 |
-
"metadata": {},
|
1095 |
-
"outputs": [],
|
1096 |
-
"source": [
|
1097 |
-
"hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30-folium\",\"space\")\n"
|
1098 |
-
]
|
1099 |
-
},
|
1100 |
-
{
|
1101 |
-
"cell_type": "markdown",
|
1102 |
-
"id": "7727c253-813a-40e6-b73a-e973514606f3",
|
1103 |
-
"metadata": {},
|
1104 |
-
"source": [
|
1105 |
-
"# Rounding acres "
|
1106 |
-
]
|
1107 |
-
},
|
1108 |
-
{
|
1109 |
-
"cell_type": "code",
|
1110 |
-
"execution_count": null,
|
1111 |
-
"id": "9f427c9d-6b87-4bc0-a5d7-66f16a9bec77",
|
1112 |
-
"metadata": {},
|
1113 |
-
"outputs": [],
|
1114 |
-
"source": [
|
1115 |
-
"# foliumap tooltip looks messy so I am rounding the acres value.\n",
|
1116 |
-
"parquet = \"cpad-stats.parquet\"\n",
|
1117 |
-
"ca = (con\n",
|
1118 |
-
" .read_parquet(parquet)\n",
|
1119 |
-
" .mutate(acres = _.acres.round(4)\n",
|
1120 |
-
" )\n",
|
1121 |
-
" )\n",
|
1122 |
-
"\n",
|
1123 |
-
"gdf = ca.execute().set_crs(\"EPSG:4326\")\n",
|
1124 |
-
"gdf.to_parquet(\"cpad-stats.parquet\")\n",
|
1125 |
-
"## didn't need to upload parquet since the rounding doesn't impact this?\n",
|
1126 |
-
"hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"dataset\")\n",
|
1127 |
-
"# hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"space\")\n",
|
1128 |
-
"# hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30-folium\",\"space\")\n"
|
1129 |
-
]
|
1130 |
-
},
|
1131 |
-
{
|
1132 |
-
"cell_type": "code",
|
1133 |
-
"execution_count": null,
|
1134 |
-
"id": "9d949c80-c572-4ee2-aa73-563c9ac5a649",
|
1135 |
-
"metadata": {},
|
1136 |
-
"outputs": [],
|
1137 |
-
"source": [
|
1138 |
-
"gdf.to_file(\"cpad-stats.geojson\")\n",
|
1139 |
-
"generate_pmtiles(\"cpad-stats.geojson\",\"cpad-stats.pmtiles\")\n",
|
1140 |
-
"hf_upload(\"cpad-stats.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n"
|
1141 |
-
]
|
1142 |
-
}
|
1143 |
-
],
|
1144 |
-
"metadata": {
|
1145 |
-
"kernelspec": {
|
1146 |
-
"display_name": "Python 3 (ipykernel)",
|
1147 |
-
"language": "python",
|
1148 |
-
"name": "python3"
|
1149 |
-
},
|
1150 |
-
"language_info": {
|
1151 |
-
"codemirror_mode": {
|
1152 |
-
"name": "ipython",
|
1153 |
-
"version": 3
|
1154 |
-
},
|
1155 |
-
"file_extension": ".py",
|
1156 |
-
"mimetype": "text/x-python",
|
1157 |
-
"name": "python",
|
1158 |
-
"nbconvert_exporter": "python",
|
1159 |
-
"pygments_lexer": "ipython3",
|
1160 |
-
"version": "3.12.7"
|
1161 |
-
}
|
1162 |
-
},
|
1163 |
-
"nbformat": 4,
|
1164 |
-
"nbformat_minor": 5
|
1165 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
pandas==2.2.2
|
2 |
-
leafmap[maplibre]
|
3 |
-
ibis-framework[duckdb]
|
4 |
streamlit==1.37.0
|
5 |
streamlit_folium==0.20.0
|
6 |
altair==5.3.0
|
@@ -8,12 +8,12 @@ referencing==0.35.1
|
|
8 |
rasterio==1.3.10
|
9 |
shapely==2.0.4
|
10 |
shiny==0.10.2
|
11 |
-
geoarrow-types
|
12 |
-
geoarrow-pandas
|
13 |
leafmap==0.38.12
|
14 |
SQLAlchemy==2.0.35
|
15 |
-
duckdb_engine
|
16 |
-
langchain
|
17 |
-
langchain-community
|
18 |
-
langchain-core
|
19 |
-
langchain-openai
|
|
|
1 |
pandas==2.2.2
|
2 |
+
leafmap[maplibre]==0.38.12
|
3 |
+
ibis-framework[duckdb]==9.5.0
|
4 |
streamlit==1.37.0
|
5 |
streamlit_folium==0.20.0
|
6 |
altair==5.3.0
|
|
|
8 |
rasterio==1.3.10
|
9 |
shapely==2.0.4
|
10 |
shiny==0.10.2
|
11 |
+
geoarrow-types==0.2.0
|
12 |
+
geoarrow-pandas==0.1.1
|
13 |
leafmap==0.38.12
|
14 |
SQLAlchemy==2.0.35
|
15 |
+
duckdb_engine==0.14.2
|
16 |
+
langchain==0.2.17
|
17 |
+
langchain-community==0.2.19
|
18 |
+
langchain-core==0.2.43
|
19 |
+
langchain-openai==0.1.25
|