import streamlit as st import streamlit.components.v1 as components import base64 import leafmap.maplibregl as leafmap import altair as alt import ibis from ibis import _ import ibis.selectors as s import os import pandas as pd import geopandas as gpd from shapely import wkb import sqlalchemy import pathlib from typing import Optional from functools import reduce from itertools import chain from variables import * def colorTable(select_colors,color_choice,column): colors = (ibis .memtable(select_colors[color_choice], columns=[column, "color"]) .to_pandas() ) return colors def get_summary(ca, combined_filter, column, main_group, colors=None): df = ca.filter(combined_filter) #total acres for each group # if colors is not None and not colors.empty: group_totals = df.group_by(main_group).aggregate(total_acres=_.acres.sum()) df = ca.filter(combined_filter) df = (df .group_by(*column) # unpack the list for grouping .aggregate(percent_CA= _.acres.sum() / ca_area_acres, acres = _.acres.sum(), mean_richness = (_.richness * _.acres).sum() / _.acres.sum(), mean_rsr = (_.rsr * _.acres).sum() / _.acres.sum(), mean_irrecoverable_carbon = (_.irrecoverable_carbon * _.acres).sum() / _.acres.sum(), mean_manageable_carbon = (_.manageable_carbon * _.acres).sum() / _.acres.sum(), mean_fire = (_.fire *_.acres).sum()/_.acres.sum(), mean_rxburn = (_.rxburn *_.acres).sum()/_.acres.sum(), mean_disadvantaged = (_.disadvantaged_communities * _.acres).sum() / _.acres.sum(), mean_svi = (_.svi * _.acres).sum() / _.acres.sum(), ) .mutate(percent_CA=_.percent_CA.round(3), acres=_.acres.round(0)) ) # if colors is not None and not colors.empty: df = df.inner_join(group_totals, main_group) df = df.mutate(percent_group=( _.acres / _.total_acres).round(3)) if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it. df = df.inner_join(colors, column[-1]) df = df.cast({col: "string" for col in column}) df = df.to_pandas() return df def summary_table(ca, column, select_colors, color_choice, filter_cols, filter_vals,colorby_vals): # get df for charts + df_tab for printed table colors = colorTable(select_colors,color_choice,column) filters = [] if filter_cols and filter_vals: #if a filter is selected, add to list of filters for filter_col, filter_val in zip(filter_cols, filter_vals): if len(filter_val) > 1: filters.append(getattr(_, filter_col).isin(filter_val)) else: filters.append(getattr(_, filter_col) == filter_val[0]) if column not in filter_cols: #show color_by column in table by adding it as a filter (if it's not already a filter) filter_cols.append(column) filters.append(getattr(_, column).isin(colorby_vals[column])) combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression only_conserved = (combined_filter) & (_.status.isin(['30x30-conserved'])) df_percent = get_summary(ca, only_conserved, [column],column, colors) # df used for percentage, excludes non-conserved. df_tab = get_summary(ca, combined_filter, filter_cols, column, colors = None) #df used for printed table if "non-conserved" in list(chain.from_iterable(filter_vals)): combined_filter = (combined_filter) | (_.status.isin(['non-conserved'])) df = get_summary(ca, combined_filter, [column], column, colors) # df used for charts df_bar_30x30 = None # no stacked charts if we have status/gap_code if column not in ["status","gap_code"]: # df for stacked 30x30 status bar chart colors = colorTable(select_colors,"30x30 Status",'status') df_bar_30x30 = get_summary(ca, combined_filter, [column, 'status'], column, colors) # df used for charts return df, df_tab, df_percent, df_bar_30x30 def summary_table_sql(ca, column, colors, ids): # get df for charts + df_tab for printed table filters = [_.id.isin(ids)] combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression df = get_summary(ca, combined_filter, [column], column, colors) # df used for charts return df def get_hex(df, color,sort_order): return list(df.drop_duplicates(subset=color, keep="first") .set_index(color) .reindex(sort_order) .dropna()["color"]) def transform_label(label, x_field): # converting labels for that gnarly stacked bar chart if x_field == "access_type": return label.replace(" Access", "") elif x_field == "ecoregion": label = label.replace("Northern California", "NorCal") label = label.replace("Southern California", "SoCal") label = label.replace("Southeastern", "SE.") label = label.replace("Northwestern", "NW.") label = label.replace("and", "&") label = label.replace("California", "CA") return label else: return label def stacked_bar(df, x, y, color, title, colors): label_colors = colors['color'].to_list() # bar order if x == "established": # order labels in chronological order, not alphabetic. sort = '-x' elif x == "access_type": # order based on levels of openness sort = ['Open', 'Restricted', 'No Public', "Unknown"] elif x == "easement": sort = ['True', 'False'] elif x == "manager_type": sort = ["Federal", "Tribal", "State", "Special District", "County", "City", "HOA", "Joint", "Non Profit", "Private", "Unknown"] elif x == "status": sort = ["30x30-conserved", "other-conserved", "unknown", "non-conserved"] elif x == "ecoregion": sort = ['SE. Great Basin', 'Mojave Desert', 'Sonoran Desert', 'Sierra Nevada', 'SoCal Mountains & Valleys', 'Mono', 'Central CA Coast', 'Klamath Mountains', 'NorCal Coast', 'NorCal Coast Ranges', 'NW. Basin & Range', 'Colorado Desert', 'Central Valley Coast Ranges', 'SoCal Coast', 'Sierra Nevada Foothills', 'Southern Cascades', 'Modoc Plateau', 'Great Valley (North)', 'NorCal Interior Coast Ranges', 'Great Valley (South)'] else: sort = 'x' if x == "manager_type": angle = 270 height = 350 elif x == 'ecoregion': angle = 270 height = 430 else: angle = 0 height = 310 # stacked bar order sort_order = ['30x30-conserved', 'other-conserved', 'unknown', 'non-conserved'] y_titles = { 'ecoregion': 'Ecoregion (%)', 'established': 'Year (%)', 'manager_type': 'Manager Type (%)', 'easement': 'Easement (%)', 'access_type': 'Access (%)' } ytitle = y_titles.get(x, y) color_hex = get_hex(df[[color, 'color']], color, sort_order) sort_order = sort_order[0:len(color_hex)] df["stack_order"] = df[color].apply(lambda val: sort_order.index(val) if val in sort_order else len(sort_order)) # shorten labels to fit on chart label_transform = f"datum.{x}" if x == "access_type": label_transform = f"replace(datum.{x}, ' Access', '')" elif x == "ecoregion": label_transform = ( "replace(" "replace(" "replace(" "replace(" "replace(" "replace(datum.ecoregion, 'Northern California', 'NorCal')," "'Southern California', 'SoCal')," "'Southeastern', 'SE.')," "'Northwestern', 'NW.')," "'and', '&')," "'California', 'CA')" ) # to match the colors in the map to each label, need to write some ugly code.. # bar chart w/ xlabels hidden chart = alt.Chart(df).mark_bar(height = 500).transform_calculate( xlabel=label_transform ).encode( x=alt.X("xlabel:N", sort=sort, title=None, axis=alt.Axis(labelLimit=150, labelAngle=angle, labelColor="transparent")), y=alt.Y(y, title=ytitle, axis=alt.Axis(labelPadding=5)).scale(domain=(0, 1)), color=alt.Color( color, sort=sort_order, scale=alt.Scale(domain=sort_order, range=color_hex) ), order=alt.Order("stack_order:Q", sort="ascending"), tooltip=[ alt.Tooltip(x, type="nominal"), alt.Tooltip(color, type="nominal"), alt.Tooltip("percent_group", type="quantitative", format=",.1%"), alt.Tooltip("acres", type="quantitative", format=",.0f"), ] ) transformed_labels = [transform_label(str(lab), x) for lab in colors[x]] labels_df = colors labels_df['xlabel'] = transformed_labels # 2 layers, 1 for the symbol and 1 for the text if angle == 0: symbol_layer = alt.Chart(labels_df).mark_point( filled=True, shape="circle", size=100, xOffset = 0, yOffset=130, align = 'left', tooltip = False ).encode( x=alt.X("xlabel:N", sort=sort), color=alt.Color("color:N", scale=None) ) text_layer = alt.Chart(labels_df).mark_text( dy=115, # shifts the text to the right of the symbol dx = 0, yOffset=0, xOffset = 0, align='center', color="black", tooltip = False ).encode( x=alt.X("xlabel:N", sort=sort), text=alt.Text("xlabel:N") ) # vertical labels elif angle == 270: symbol_layer = alt.Chart(labels_df).mark_point( xOffset = 0, yOffset= 100, filled=True, shape="circle", size=100, tooltip = False ).encode( x=alt.X("xlabel:N", sort=sort), color=alt.Color("color:N", scale=None) ) text_layer = alt.Chart(labels_df).mark_text( dy=0, dx = -110, angle=270, align='right', color="black", tooltip = False ).encode( x=alt.X("xlabel:N", sort=sort), text=alt.Text("xlabel:N") ) custom_labels = alt.layer(symbol_layer, text_layer) final_chart = alt.layer(chart, custom_labels) # put it all together final_chart = final_chart.properties( width="container", height=height, title=title ).configure_legend( direction='horizontal', orient='top', columns=2, title=None, labelOffset=2, offset=10, symbolType = 'square' ).configure_title( fontSize=18, align="center", anchor='middle', offset=10 ) return final_chart def area_plot(df, column): # Percent protected pie chart base = alt.Chart(df).encode( alt.Theta("percent_CA:Q").stack(True), ) pie = ( base .mark_arc(innerRadius=40, outerRadius=100, stroke="black", strokeWidth=0.5) .encode( alt.Color("color:N").scale(None).legend(None), tooltip=[ alt.Tooltip(column, type="nominal"), alt.Tooltip("percent_CA", type="quantitative", format=",.1%"), alt.Tooltip("acres", type="quantitative", format=",.0f"), ] ) ) text = ( base .mark_text(radius=80, size=14, color="white") .encode(text=column + ":N") ) plot = pie # pie + text return plot.properties(width="container", height=290) def bar_chart(df, x, y, title): #display summary stats for color_by column #axis label angles / chart size if x == "manager_type": #labels are too long, making vertical angle = 270 height = 373 elif x == 'ecoregion': # make labels vertical and figure taller angle = 270 height = 430 else: #other labels are horizontal angle = 0 height = 310 # order of bars sort = 'x' lineBreak = '' if x == "established": # order labels in chronological order, not alphabetic. sort = '-x' elif x == "access_type": #order based on levels of openness sort=['Open', 'Restricted', 'No Public', "Unknown"] elif x == "easement": sort=['True','False'] elif x == "manager_type": sort = ["Federal","Tribal","State","Special District", "County", "City", "HOA","Joint","Non Profit","Private","Unknown"] elif x == "ecoregion": sort = ['SE. Great Basin','Mojave Desert','Sonoran Desert','Sierra Nevada','SoCal Mountains & Valleys','Mono', 'Central CA Coast','Klamath Mountains','NorCal Coast','NorCal Coast Ranges', 'NW. Basin & Range','Colorado Desert','Central Valley Coast Ranges','SoCal Coast', 'Sierra Nevada Foothills','Southern Cascades','Modoc Plateau','Great Valley (North)','NorCal Interior Coast Ranges', 'Great Valley (South)'] elif x == "status": sort = ["30x30-conserved","other-conserved","unknown","non-conserved"] lineBreak = '-' # modify label names in bar chart to fit in frame label_transform = f"datum.{x}" # default; no change if x == "access_type": label_transform = f"replace(datum.{x}, ' Access', '')" #omit 'access' from access_type elif x == "ecoregion": label_transform = ( "replace(" "replace(" "replace(" "replace(" "replace(" "replace(datum.ecoregion, 'Northern California', 'NorCal')," "'Southern California', 'SoCal')," "'Southeastern', 'SE.')," "'Northwestern', 'NW.')," "'and', '&')," "'California', 'CA')" ) y_titles = { 'mean_richness': 'Richness (Mean)', 'mean_rsr': 'Range-Size Rarity (Mean)', 'mean_irrecoverable_carbon': 'Irrecoverable Carbon (Mean)', 'mean_manageable_carbon': 'Manageable Carbon (Mean)', 'mean_disadvantaged': 'Disadvantaged (Mean)', 'mean_svi': 'SVI (Mean)', 'mean_fire': 'Fire (Mean)', 'mean_rxburn': 'Rx Fire (Mean)' } ytitle = y_titles.get(y, y) # Default to `y` if not in the dictionary x_title = next(key for key, value in select_column.items() if value == x) chart = alt.Chart(df).mark_bar(stroke = 'black', strokeWidth = .5).transform_calculate( label=label_transform ).encode( x=alt.X("label:N", axis=alt.Axis(labelAngle=angle, title=x_title, labelLimit = 200), sort=sort), y=alt.Y(y, axis=alt.Axis(title = ytitle)), color=alt.Color('color').scale(None), ).configure(lineBreak = lineBreak) chart = chart.properties(width="container", height=height, title = title ).configure_title(fontSize=18, align = "center",anchor='middle') return chart def sync_checkboxes(source): # gap 1 and gap 2 on -> 30x30-conserved on if source in ["gap_code1", "gap_code2"]: st.session_state['status30x30-conserved'] = st.session_state.gap_code1 and st.session_state.gap_code2 # 30x30-conserved on -> gap 1 and gap 2 on elif source == "status30x30-conserved": st.session_state.gap_code1 = st.session_state['status30x30-conserved'] st.session_state.gap_code2 = st.session_state['status30x30-conserved'] # other-conserved on <-> gap 3 on elif source == "gap_code3": st.session_state["statusother-conserved"] = st.session_state.gap_code3 elif source == "statusother-conserved": if "gap_code3" in st.session_state and st.session_state["statusother-conserved"] != st.session_state.gap_code3: st.session_state.gap_code3 = st.session_state["statusother-conserved"] # unknown on <-> gap 4 on elif source == "gap_code4": st.session_state.statusunknown = st.session_state.gap_code4 elif source == "statusunknown": if "gap_code4" in st.session_state and st.session_state.statusunknown != st.session_state.gap_code4: st.session_state.gap_code4 = st.session_state.statusunknown # non-conserved on <-> gap 0 elif source == "gap_code0": st.session_state['statusnon-conserved'] = st.session_state.gap_code0 elif source == "statusnon-conserved": if "gap_code0" in st.session_state and st.session_state['statusnon-conserved'] != st.session_state.gap_code0: st.session_state.gap_code0 = st.session_state['statusnon-conserved'] def getButtons(style_options, style_choice, default_boxes=None): column = style_options[style_choice]['property'] opts = [style[0] for style in style_options[style_choice]['stops']] default_boxes = default_boxes or {} buttons = {} for name in opts: key = column + str(name) buttons[name] = st.checkbox(f"{name}", value=st.session_state[key], key=key, on_change = sync_checkboxes, args = (key,)) filter_choice = [key for key, value in buttons.items() if value] return {column: filter_choice} def getColorVals(style_options, style_choice): #df_tab only includes filters selected, we need to manually add "color_by" column (if it's not already a filter). column = style_options[style_choice]['property'] opts = [style[0] for style in style_options[style_choice]['stops']] d = {} d[column] = opts return d def getLegend(style_options, color_choice): legend = {cat: color for cat, color in style_options[color_choice]['stops']} position = 'bottom-left' fontsize = 15 bg_color = 'white' # shorten legend for ecoregions if color_choice == "Ecoregion": legend = {key.replace("Northern California", "NorCal"): value for key, value in legend.items()} legend = {key.replace("Southern California", "SoCal"): value for key, value in legend.items()} legend = {key.replace("Southeastern", "SE."): value for key, value in legend.items()} legend = {key.replace("and", "&"): value for key, value in legend.items()} legend = {key.replace("California", "CA"): value for key, value in legend.items()} legend = {key.replace("Northwestern", "NW."): value for key, value in legend.items()} bg_color = 'rgba(255, 255, 255, 0.6)' fontsize = 12 return legend, position, bg_color, fontsize def get_pmtiles_style(paint, alpha, filter_cols, filter_vals): filters = [] for col, val in zip(filter_cols, filter_vals): filters.append(["match", ["get", col], val, True, False]) combined_filters = ["all"] + filters if "non-conserved" in list(chain.from_iterable(filter_vals)): combined_filters = ["any", combined_filters, ["match", ["get", "status"], ["non-conserved"],True, False]] style = { "version": 8, "sources": { "ca": { "type": "vector", "url": "pmtiles://" + ca_pmtiles, } }, "layers": [ { "id": "ca30x30", "source": "ca", "source-layer": "ca30x30", "type": "fill", "filter": combined_filters, "paint": { "fill-color": paint, "fill-opacity": alpha } } ] } return style def get_pmtiles_style_llm(paint, ids): combined_filters = ["all", ["match", ["get", "id"], ids, True, False]] style = { "version": 8, "sources": { "ca": { "type": "vector", "url": "pmtiles://" + ca_pmtiles, } }, "layers": [ { "id": "ca30x30", "source": "ca", "source-layer": "ca30x30", "type": "fill", "filter": combined_filters, "paint": { "fill-color": paint, "fill-opacity": 1, } } ] } return style