File size: 5,563 Bytes
25d7546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import streamlit as st

import ibis
from ibis import _
import pydeck as pdk
from utilities import *
import leafmap.maplibregl as leafmap
import requests
import geopandas as gpd

st.set_page_config(page_title="Redlining & GBIF", layout="wide")
st.title("Redlining & GBIF")

con = ibis.duckdb.connect(extensions=['httpfs', 'spatial', 'h3'])
set_secrets(con) # s3 credentials
#set_aws_secrets(con)
#set_source_secrets(con)

distinct_taxa = "" # default

col1, col2, col3, col4 = st.columns([1,3,3,3])

# placed outside the form so that toggling this immediately updates the form options available
with col1:
    st.markdown("#### Start πŸ‘‡")
    area_source = st.radio("Area types", ["City", "All"])  
    nunique = st.toggle("unique taxa only", False)


# config with different default settings by area
config = {
    "City": {
        "names": con.read_parquet("s3://public-gbif/app/city_names.parquet").select("name").execute(),
        "index": 183,
        "zoom": 11,
        "vertical": 0.1,
        "rank_index": 2,
        "taxa": "Aves",
    },
     "All": {
        "names": ["All"],
        "index": 0,
        "zoom": 9,
        "vertical": 1.0,
        "rank_index": 2,
        "taxa": "Aves",
    }
}

with st.form("my_form"):
    
    taxonomic_ranks = ["kingdom", "phylum", "class", "order", "family","genus", "species"]
    default = config[area_source]

    with col2:
        ## Add additional layer toggles here, e.g. SVI?
        st.markdown("####  πŸ—ΊοΈ Select map layers")
        gdf_name = st.selectbox("Area", default["names"], index=default["index"])
        
    with col3:
        st.markdown("#### 🐦 Select taxonomic groups")
        ## add support for multiple taxa!
        rank = st.selectbox("Taxonomic Rank", options=taxonomic_ranks, index = default["rank_index"])
        taxa = st.text_input("taxa", default["taxa"])
        if nunique:
            distinct_taxa = st.selectbox("Count only unique occurrences by:", options=taxonomic_ranks, index = default["rank_index"])

    with col4: 
        st.markdown('''
        #### πŸ”Ž Set spatial resolution
        See [H3 cell size by zoom](https://h3geo.org/docs/core-library/restable/#cell-areas)
        ''')
        zoom = st.slider("H3 resolution", min_value=1, max_value=11, value = default["zoom"])
        v_scale = st.number_input("vertical scale", min_value = 0.0, value = default["vertical"])

    submitted = st.form_submit_button("Go")

@st.cache_data
def compute_hexes(_gdf, gdf_name, rank, taxa, zoom, distinct_taxa = ""):

    # FIXME check if dest exists in cache
    dest = unique_path(gdf_name, rank, taxa, zoom, distinct_taxa)
    bucket = "public-gbif"
    url = base_url + f"/{bucket}/" + dest

    response = requests.head(url)
    if response.status_code != 404:
        return url

    sel = con.read_parquet("s3://public-gbif/app/redlined_cities_gbif.parquet")

    sel = (sel
           .rename(hex = "h" + str(zoom)) # h3 == 41,150 hexes.  h5 == 2,016,830 hexes
           .group_by(_.hex)
           )

    if distinct_taxa != "": # count n unique taxa
        sel = sel.agg(n = _[distinct_taxa].nunique()) 
    else: # count occurrences
        sel = sel.agg(n = _.count())

    sel = (sel
           .filter(_.n > 0)
           .mutate(logn = _.n.log())
           .mutate(value = (255 * _.logn / _.logn.max()).cast("int")) # normalized color-scale
    )

    # .to_json() doesn't exist in ibis, use SQL
    query = ibis.to_sql(sel)
    con.raw_sql(f"COPY ({query}) TO 's3://{bucket}/{dest}' (FORMAT JSON, ARRAY true);")

    return url



import altair as alt

@st.cache_data
def bar_chart(gdf_name, rank, taxa, zoom, distinct_taxa = ""):
    sel = con.read_parquet("s3://public-gbif/app/redlined_cities_gbif.parquet")
    sel = sel.filter(_[rank] == taxa)

    if gdf_name != "All":
        sel = sel.filter(_.city == gdf_name)
    
    sel = (sel
      .group_by(_.city, _.grade)
      .agg(n = _.count(), area = _.area.sum())
      .mutate(density = _.n /_.area)
      .group_by(_.grade)
      .agg(mean = _.density.mean(),sd = _.density.std())
      .order_by(_.mean.desc())
    )
    
    plt = alt.Chart(sel.execute()).mark_bar().encode(x = "grade", y = "mean")
    return st.altair_chart(plt)

mappinginequality = 'https://data.source.coop/cboettig/us-boundaries/mappinginequality.pmtiles'

redlines = {'version': 8,
 'sources': {'source': {'type': 'vector',
   'url': 'pmtiles://' + mappinginequality,
   'attribution': 'PMTiles'}},
 'layers': [{'id': 'mappinginequality_fill',
   'source': 'source',
   'source-layer': 'mappinginequality',
   'type': 'fill',
   'paint': {'fill-color': ["get", "fill"], 'fill-opacity': 0.9},}
    ]}


count = "occurrences"
if nunique:
    count = "unique " + distinct_taxa

mapcol, chartcol = st.columns([4,1])

if submitted:
    gdf = get_polygon(gdf_name, area_source, con)
    url = compute_hexes(gdf, gdf_name, rank, taxa, zoom, distinct_taxa = distinct_taxa)
    layer = HexagonLayer(url, v_scale)

    
    m = leafmap.Map(style= terrain_style, center=[-120, 37.6], zoom=2, pitch=35, bearing=10)
    if gdf is not None:
        m.add_gdf(gdf[[gdf.geometry.name]], "fill", paint = {"fill-opacity": 0.2}) # adds area of interest & zooms in
    m.add_pmtiles(mappinginequality, style=redlines, visible=True, opacity = 0.9,  fit_bounds=False)
    m.add_deck_layers([layer])
    m.add_layer_control()

    with mapcol:
        m.to_streamlit()
    with chartcol:
        st.markdown("Mean number of " + count + " by redline grade")
        bar_chart(gdf_name, rank, taxa, zoom, distinct_taxa = "")