File size: 7,874 Bytes
25d7546
 
 
 
 
 
 
 
 
60c8755
25d7546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa039be
25d7546
 
 
da2900f
25d7546
 
 
 
 
 
 
 
da2900f
25d7546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da2900f
 
 
25d7546
 
da2900f
 
 
25d7546
 
 
 
74a077a
25d7546
74a077a
25d7546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c8755
 
 
 
25d7546
59619f7
 
 
25d7546
 
 
 
 
 
d938967
25d7546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e82a1cf
25d7546
 
60c8755
 
 
 
 
25d7546
 
da2900f
 
 
74a077a
da2900f
 
 
d938967
60c8755
25d7546
 
 
 
 
 
1fc5096
25d7546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a077a
 
1fc5096
25d7546
 
 
60c8755
 
 
 
 
 
 
 
 
 
25d7546
60c8755
25d7546
1fc5096
74a077a
1fc5096
25d7546
fa039be
60c8755
fa039be
 
60c8755
fa039be
50d237e
 
e85b9e8
 
 
50d237e
fa039be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import streamlit as st

import ibis
from ibis import _
import pydeck as pdk
from utilities import *
import leafmap.maplibregl as leafmap
import requests
import geopandas as gpd
import altair as alt

st.set_page_config(page_title="Redlining & GBIF", layout="wide")
st.title("Redlining & GBIF")

con = ibis.duckdb.connect(extensions=['httpfs', 'spatial', 'h3'])
set_secrets(con) # s3 credentials
#set_aws_secrets(con)
#set_source_secrets(con)

distinct_taxa = "" # default

col1, col2, col3, col4 = st.columns([1,3,3,3])

# placed outside the form so that toggling this immediately updates the form options available
with col1:
    st.markdown("#### Start πŸ‘‡")
    area_source = st.radio("Area types", ["City", "All"])  
    nunique = st.toggle("unique taxa only", False)


# config with different default settings by area
config = {
    "City": {
        "names": con.read_parquet("s3://public-gbif/app/city_names.parquet").select("name").execute(),
        "index": 183,
        "zoom": 10,
        "vertical": 0.1,
        "rank_index": 2,
        "taxa": "Aves",
        "unique_rank_index": 6,
    },
     "All": {
        "names": ["All"],
        "index": 0,
        "zoom": 9,
        "vertical": 1.0,
        "rank_index": 2,
        "taxa": "Aves",
        "unique_rank_index": 6,
    }
}

with st.form("my_form"):
    
    taxonomic_ranks = ["kingdom", "phylum", "class", "order", "family","genus", "species"]
    default = config[area_source]

    with col2:
        ## Add additional layer toggles here, e.g. SVI?
        st.markdown("####  πŸ—ΊοΈ Select map layers")
        gdf_name = st.selectbox("Area", default["names"], index=default["index"])
        
    with col3:
        st.markdown("#### 🐦 Select taxonomic groups")
        ## add support for multiple taxa!
        rank = st.selectbox("Taxonomic Rank",
                            options=taxonomic_ranks, 
                            index = default["rank_index"])
        taxa = st.text_input("taxa", default["taxa"])
        if nunique:
            distinct_taxa = st.selectbox("Count only unique occurrences by:",
                                         options=taxonomic_ranks,
                                         index = default["unique_rank_index"])

    with col4: 
        st.markdown('''
        #### πŸ”Ž Set spatial resolution
        See [H3 cell size by zoom level](https://h3geo.org/docs/core-library/restable/#cell-areas)
        ''')
        zoom = st.slider("H3 zoom", min_value=1, max_value=11, value = default["zoom"])
        v_scale = st.number_input("vertical scale", min_value = 0.0, value = default["vertical"])

    submitted = st.form_submit_button("Go")

@st.cache_data
def compute_hexes(_gdf, gdf_name, rank, taxa, zoom, distinct_taxa = ""):

    dest = unique_path(gdf_name, rank, taxa, zoom, distinct_taxa)
    bucket = "public-gbif"
    url = base_url + f"/{bucket}/" + dest

    response = requests.head(url)
    if response.status_code != 404:
        return url

    sel = (con
           .read_parquet("s3://public-gbif/app/redlined_cities_gbif.parquet")
           .filter(_[rank] == taxa)
          )

    if gdf_name != "All":
        sel = sel.filter(_.city == gdf_name)

    sel = (sel
           .rename(hex = "h" + str(zoom)) # h3 == 41,150 hexes.  h5 == 2,016,830 hexes
           .group_by(_.hex)
           )

    if distinct_taxa != "": # count n unique taxa
        sel = sel.agg(n = _[distinct_taxa].nunique())
    else: # count occurrences
        sel = sel.agg(n = _.count())

    sel = (sel
           .filter(_.n > 0)
           .mutate(logn = _.n.log())
           .mutate(value = (255 * _.logn / _.logn.max()).cast("int")) # normalized color-scale
    )

    # .to_json() doesn't exist in ibis, use SQL
    query = ibis.to_sql(sel)
    con.raw_sql(f"COPY ({query}) TO 's3://{bucket}/{dest}' (FORMAT JSON, ARRAY true);")

    return url



# @st.cache_data
def bar_chart(gdf_name, rank, taxa, zoom, distinct_taxa = ""):
    sel = con.read_parquet("s3://public-gbif/app/redlined_cities_gbif.parquet")
    sel = (sel
           .filter(_[rank] == taxa)
           .mutate(geom = _.geom.convert('EPSG:4326', 'ESRI:54009'))
           .mutate(area = _.geom.area())
          )
    if gdf_name != "All":
        sel = sel.filter(_.city == gdf_name)

    sel = sel.group_by(_.city, _.grade)

    if distinct_taxa: # count n unique taxa
        sel = sel.agg(n = _[distinct_taxa].nunique(), area = _.area.sum()) 
    else:
        sel = sel.agg(n = _.count(), area = _.area.sum())
    sel = (sel
      .mutate(density = _.n /_.area * 10000) # per hectre
      .group_by(_.grade)
      .agg(mean = _.density.mean(),sd = _.density.std())
      .order_by(_.mean.desc())
    )
    
    plt = alt.Chart(sel.execute()).mark_bar().encode(x = "grade", y = "mean")
    return st.altair_chart(plt, use_container_width=True)

mappinginequality = 'https://data.source.coop/cboettig/us-boundaries/mappinginequality.pmtiles'

redlines = {'version': 8,
 'sources': {'source': {'type': 'vector',
   'url': 'pmtiles://' + mappinginequality,
   'attribution': 'PMTiles'}},
 'layers': [{'id': 'mappinginequality_fill',
   'source': 'source',
   'source-layer': 'mappinginequality',
   'type': 'fill',
   'paint': {'fill-color': ["get", "fill"], 'fill-opacity': 0.9},}
    ]}


count = "occurrences"
if nunique:
    count = "unique " + distinct_taxa



mapcol, chartcol = st.columns([3,1])

if submitted:
    with mapcol:
        gdf = get_polygon(gdf_name, area_source, con)
        url = compute_hexes(gdf, gdf_name, rank, taxa, zoom, distinct_taxa = distinct_taxa)
        layer = HexagonLayer(url, v_scale)

        m = leafmap.Map(style=terrain_styling(), center=[-120, 37.6], zoom=2, pitch=35, bearing=10)
        if gdf is not None:
            m.add_gdf(gdf[[gdf.geometry.name]], "fill", paint = {"fill-opacity": 0.2}) # adds area of interest & zooms in
        m.add_pmtiles(mappinginequality, style=redlines, visible=True, opacity = 0.9,  fit_bounds=False)
        m.add_deck_layers([layer])
        m.add_layer_control()
        m.to_streamlit()
        
    with chartcol:
        st.markdown(f"{gdf_name}")
        bar_chart(gdf_name, rank, taxa, zoom, distinct_taxa = distinct_taxa)
        st.markdown(f"Mean density of {count} by redline grade, in counts per hectre")


    
st.divider()


'''
## Overview

Select an individual city or choose "All" to show all 319 cities in the Mapping Inequality Project.  You can set arbitrary taxonomic filters on what GBIF data is displayed -- e.g. show all of Aves or just show _Canis latrans_. Toggle `unique taxa only` to show either all occurrences or just unique species (or other rank) counts.  The map will show all counts at the selected 'H3 cell' resolution, while the chart on the left shows aggregate counts by redlining grade.  Note that only GBIF data inside graded sectors of the Mapping Inequality maps are shown, occurrences outside these areas have been cropped.  You may need to adjust the vertical scale of map hexes. After making your selections, hit **Go**!  

Map layers may take a while to load on slower networks.  Scroll to zoom, ctrl+click to pivot camera.


## Credits

App developed by Carl Boettiger & Diego Soto, UC Berkeley (2024).

### Data Sources

- Global Biodiversity Information Facility (GBIF) Species Occurrences snapshot on 2024-10-01. Copyright: Public Domain.  Visualization based on pre-computed H3 cell values for all of GBIF, hosted on Source.Coop, <https://source.coop/repositories/cboettig/gbif> as GeoParquet and PMTiles.

- Historical Redlining Data from the Mapping Inequality Project, <https://dsl.richmond.edu/panorama/redlining/>.

### Software

- All open-source software implementation, hosted on HuggingFace Spaces.
- Built with `duckdb`, `maplibre`, `leafmap`, and `streamlit`.
- Source code at <https://github.com/boettiger-lab/redlining-app>

'''