File size: 35,335 Bytes
c8d7b4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 |
# Sharing the app https://shiny.posit.co/r/getstarted/shiny-basics/lesson7/
# rsconnect::setAccountInfo(name='diego-ellis-soto', token='A47BE3C9E4B9EBCDFEC889AF31F64154', secret='g2Q2rxeYCiwlH81EkPXcCGsiHMgdyhTznJRmHtea')
# deployApp()
# Add that you can hover over the greespace and get its name
# Improve the titles of the ggplots of the model coefficient estimates and of ggplot using the gbif summary table on data avialability vs species richness. Also log transform these values for better data visualization
# Also the ggplot of data avialability vs species richness. should also update if the user decides to subset by class or family. Until then, its okay to retain the general plot using all the data from gbif_sf
# Optimize some calculations? Shorten
###############################################################################
# Shiny App: San Francisco Biodiversity Access Decision Support Tool
# Author: Diego Ellis Soto, et al.
# University of California Berkeley, ESPM
# California Academy of Sciences
###############################################################################
library(shiny)
library(leaflet)
library(mapboxapi)
library(tidyverse)
library(tidycensus)
library(sf)
library(DT)
library(RColorBrewer)
library(terra)
library(data.table) # for fread
library(mapview) # for mapview objects
library(sjPlot) # for plotting lm model coefficients
library(sjlabelled) # optional if needed for sjPlot
# ------------------------------------------------
# 1) API Keys
# ------------------------------------------------
mapbox_token <- "pk.eyJ1Ijoia3dhbGtlcnRjdSIsImEiOiJjbHc3NmI0cDMxYzhyMmt0OXBiYnltMjVtIn0.Thtu6WqIhOfin6AykskM2g"
mb_access_token(mapbox_token, install = FALSE)
# ------------------------------------------------
# 2) Load Data
# ------------------------------------------------
# -- Greenspace
osm_greenspace <- st_read("data/greenspaces_osm_nad83.shp", quiet = TRUE) %>%
st_transform(4326)
if (!"name" %in% names(osm_greenspace)) {
osm_greenspace$name <- "Unnamed Greenspace"
}
# -- NDVI Raster
ndvi <- rast("data/SF_EastBay_NDVI_Sentinel_10.tif")
# -- GBIF data
load("data/sf_gbif.Rdata") # => sf_gbif
# -- Precomputed CBG data
load('data/cbg_vect_sf.Rdata')
if (!"unique_species" %in% names(cbg_vect_sf)) {
cbg_vect_sf$unique_species <- cbg_vect_sf$n_species
}
if (!"n_observations" %in% names(cbg_vect_sf)) {
cbg_vect_sf$n_observations <- cbg_vect_sf$n
}
if (!"median_inc" %in% names(cbg_vect_sf)) {
cbg_vect_sf$median_inc <- cbg_vect_sf$medincE
}
if (!"ndvi_mean" %in% names(cbg_vect_sf)) {
cbg_vect_sf$ndvi_mean <- cbg_vect_sf$ndvi_sentinel
}
# -- Hotspots/Coldspots
biodiv_hotspots <- st_read("data/hotspots.shp", quiet = TRUE) %>% st_transform(4326)
biodiv_coldspots <- st_read("data/coldspots.shp", quiet = TRUE) %>% st_transform(4326)
# ------------------------------------------------
# 3) UI
# ------------------------------------------------
ui <- fluidPage(
titlePanel("San Francisco Biodiversity Access Decision Support Tool"),
fluidRow(
column(
width = 12, align = "center",
tags$img(src = "UC Berkeley_logo.png",
height = "120px", style = "margin:10px;"),
tags$img(src = "California_academy_logo.png",
height = "120px", style = "margin:10px;"),
tags$img(src = "Reimagining_San_Francisco.png",
height = "120px", style = "margin:10px;")
)
),
fluidRow(
column(
width = 12,
br(),
p("This application demonstrates an approach for exploring biodiversity access in San Francisco..."),
# (Your summary text can go here)
)
),
br(),
fluidRow(
column(
width = 12,
br(),
tags$b("App Summary (Fill out with RSF data working group):"),
# Increasingly, we ask ourselves about what increasing access to biodiversity really means.
# Importantly, accessibility differs from human mobility in urban planning studies for equitable transportation systems.
p("
This application allows users to either click on a map or geocode an address (in progress)
to generate travel-time isochrones across multiple transportation modes (e.g., pedestrian, cycling, driving, driving during traffic).
It retrieves socio-economic data from precomputed Census variables, calculates NDVI,
and summarizes biodiversity records from GBIF. We explore what biodiversity access means
Users can explore information that we often relate to biodiversity in urban environments including greenspace coverage, population estimates, and species diversity within each isochrone."),
tags$b("Reimagining San Francisco (Fill out with CAS):"),
p("Reimagining San Francisco is an initiative aimed at integrating ecological, social,
and technological dimensions to shape a sustainable future for the Bay Area.
This collaboration unites diverse stakeholders to explore innovations in urban planning,
conservation, and community engagement. The Reimagining San Francisco Data Working Group has been tasked with identifying and integrating multiple sources of socio-ecological biodiversity information in a co-development framework."),
tags$b("Why Biodiversity Access Matters (Polish this):"),
p("
# Ensuring equitable access to biodiversity is essential for human well-being,
# ecological resilience, and global policy decisions related to conservation.
# Areas with higher biodiversity can support ecosystem services including pollinators, moderate climate extremes,
# and provide cultural, recreational, and health benefits to local communities.
Recognizing that cities are particularly complex socio-ecological systems facing both legacies of sociocultural practices as well as current ongoing dynamic human activities and pressures.
Incorporating multiple facets of biodiversity metrics alongside variables employed by city planners, human geographers, and decision-makers into urban planning will allow a more integrative lens in creating a sustainable future for cities and their residents."),
tags$b("How We Calculate Biodiversity Access Percentile:"),
p("Total unique species found within the user-generated isochrone.
We then compare that value to the distribution of unique species counts across all census block groups,
converting that comparison into a percentile ranking (Polish this, look at the 15 Minute city).
A higher percentile indicates greater biodiversity within the chosen area,
relative to other parts of the city or region."),
tags$b("Created by:"),
p(strong("Diego Ellis Soto", "Carl Boettiger, Rebecca Johnson, Christopher J. Schell")),
p("Contact Information",
strong("[email protected]")),
tags$b("Next Steps:"),
tags$ul(
tags$li("Add impervious surface"),
tags$li("National walkability score"),
tags$li("Social vulnerability score"),
tags$li("NatureServe biodiversity maps"),
tags$li("Calculate cold-hotspots within ggregation of H6 bins instead of by census block group: Ask Carl"),
tags$li("Species range maps"),
tags$li("Add common name GBIF"),
tags$li("Partner orgs"),
tags$li("Optimize speed -> store variables -> H-ify the world?"),
tags$li("Brainstorm and co-develop the biodiversity access score"),
tags$li("For the GBIF summaries, add an annotated GBIF_sf with environmental variables so we can see landcover type association across the biodiversity within the isochrone.")
)
)
),
br(),
tabsetPanel(
# 1) Isochrone Explorer
tabPanel("Isochrone Explorer",
sidebarLayout(
sidebarPanel(
radioButtons(
"location_choice",
"Select how to choose your location:",
choices = c("Address (Geocode)" = "address",
"Click on Map" = "map_click"),
selected = "map_click"
),
conditionalPanel(
condition = "input.location_choice == 'address'",
textInput(
"user_address",
"Enter Address:",
value = "",
placeholder = "e.g., 1600 Amphitheatre Parkway, Mountain View, CA"
)
),
checkboxGroupInput(
"transport_modes",
"Select Transportation Modes:",
choices = list("Driving" = "driving",
"Walking" = "walking",
"Cycling" = "cycling",
"Driving with Traffic"= "driving-traffic"),
selected = c("driving", "walking")
),
checkboxGroupInput(
"iso_times",
"Select Isochrone Times (minutes):",
choices = list("5" = 5, "10" = 10, "15" = 15),
selected = c(5, 10)
),
actionButton("generate_iso", "Generate Isochrones"),
actionButton("clear_map", "Clear")
),
mainPanel(
leafletOutput("isoMap", height = 600),
fluidRow(
column(12,
br(),
uiOutput("bioScoreBox"),
uiOutput("closestGreenspaceUI")
)
),
br(),
DTOutput("dataTable"),
br(),
fluidRow(
column(12,
plotOutput("bioSocPlot", height = "400px")
)
),
br(),
fluidRow(
column(12,
plotOutput("collectionPlot", height = "300px")
)
)
)
)
),
#br.?
tabPanel(
"GBIF Summaries",
sidebarLayout(
sidebarPanel(
selectInput(
"class_filter",
"Select a GBIF Class to Summarize:",
choices = c("All", sort(unique(sf_gbif$class))),
selected = "All"
),
selectInput(
"family_filter",
"Filter by Family (optional):",
choices = c("All", sort(unique(sf_gbif$family))),
selected = "All"
)
),
mainPanel(
DTOutput("classTable"),
br(),
h3("Observations vs. Species Richness"),
plotOutput("obsVsSpeciesPlot", height = "400px"),
p("This plot displays the relationship between the number of observations and the species richness. Use this visualization to understand data coverage and biodiversity trends.")
)
)
)
# )
# Separate section for the plot outside of the "GBIF Summaries" tab
# tabsetPanel(
# # 1) Isochrone Explorer
# tabPanel(
# mainPanel(
# DTOutput("classTable"),
# br(),
# fluidRow(
# column(
# 6,
# # A simple scatter or line plot for n_observations vs n_species
# plotOutput("obsVsSpeciesPlot", height = "300px")
# )
# # ,
# # column(
# # 6,
# # # A regression model plot using sjPlot
# # plotOutput("lmCoefficientsPlot", height = "300px")
# # )
# )
# )
# )
# ),
#
# br()
)
# fluidRow(
# column(
# 12,
# tags$h3("Species Richness vs Data Availability"),
# fluidRow(
# column(6, uiOutput("mapNUI")),
# column(6, uiOutput("mapSpeciesUI"))
# )
# )
# )
)
# ------------------------------------------------
# 4) Server
# ------------------------------------------------
server <- function(input, output, session) {
chosen_point <- reactiveVal(NULL)
# ------------------------------------------------
# Leaflet Base + Hide Overlays
# ------------------------------------------------
output$isoMap <- renderLeaflet({
pal_cbg <- colorNumeric("YlOrRd", cbg_vect_sf$medincE)
pal_rich <- colorNumeric("YlOrRd", domain = cbg_vect_sf$unique_species)
# 2) Color palette for data availability
pal_data <- colorNumeric("Blues", domain = cbg_vect_sf$n_observations)
leaflet() %>%
addTiles(group = "Street Map (Default)") %>%
addProviderTiles(providers$Esri.WorldImagery, group = "Satellite (ESRI)") %>%
addProviderTiles(providers$CartoDB.Positron, group = "CartoDB.Positron") %>%
addPolygons(
data = cbg_vect_sf,
group = "Income",
# fillColor = ~pal_cbg(unique_species),
fillColor = ~pal_cbg(medincE),
fillOpacity = 0.6,
color = "white",
weight = 1,
label = "Income"
) %>%
addPolygons(
data = osm_greenspace,
group = "Greenspace",
fillColor = "darkgreen",
fillOpacity = 0.3,
color = "green",
weight = 1,
label = ~name,
highlightOptions = highlightOptions(
weight = 5,
color = "blue",
fillOpacity = 0.5,
bringToFront = TRUE
),
labelOptions = labelOptions(
style = list("font-weight" = "bold", "color" = "blue"),
textsize = "12px",
direction = "auto"
)
) %>%
addPolygons(
data = biodiv_hotspots,
group = "Hotspots (KnowBR)",
fillColor = "firebrick",
fillOpacity = 0.2,
color = "firebrick",
weight = 2,
label = "Biodiversity Hotspot"
) %>%
addPolygons(
data = biodiv_coldspots,
group = "Coldspots (KnowBR)",
fillColor = "navyblue",
fillOpacity = 0.2,
color = "navyblue",
weight = 2,
label = "Biodiversity Coldspot"
) %>%
# Add richness and nobs
# -- Richness layer
addPolygons(
data = cbg_vect_sf,
group = "Species Richness",
fillColor = ~pal_rich(unique_species),
fillOpacity = 0.6,
color = "white",
weight = 1,
popup = ~paste0(
"<strong>GEOID: </strong>", GEOID,
"<br><strong>Species Richness: </strong>", unique_species,
"<br><strong>Observations: </strong>", n_observations,
"<br><strong>Median Income: </strong>", median_inc,
"<br><strong>Mean NDVI: </strong>", ndvi_mean
)
) %>%
# -- Data Availability layer
addPolygons(
data = cbg_vect_sf,
group = "Data Availability",
fillColor = ~pal_data(n_observations),
fillOpacity = 0.6,
color = "white",
weight = 1,
popup = ~paste0(
"<strong>GEOID: </strong>", GEOID,
"<br><strong>Observations: </strong>", n_observations,
"<br><strong>Species Richness: </strong>", unique_species,
"<br><strong>Median Income: </strong>", median_inc,
"<br><strong>Mean NDVI: </strong>", ndvi_mean
)
) %>%
setView(lng = -122.4194, lat = 37.7749, zoom = 12) %>%
addLayersControl(
baseGroups = c("Street Map (Default)", "Satellite (ESRI)", "CartoDB.Positron"),
overlayGroups = c("Income", "Greenspace","Species Richness", "Data Availability",
"Hotspots (KnowBR)", "Coldspots (KnowBR)"),
options = layersControlOptions(collapsed = FALSE)
) %>%
hideGroup("Income") %>%
hideGroup("Greenspace") %>%
hideGroup("Hotspots (KnowBR)") %>%
hideGroup("Coldspots (KnowBR)") %>%
hideGroup("Species Richness") %>%
hideGroup("Data Availability")
})
# ------------------------------------------------
# Observe map clicks (location_choice = 'map_click')
# ------------------------------------------------
observeEvent(input$isoMap_click, {
req(input$location_choice == "map_click")
click <- input$isoMap_click
if (!is.null(click)) {
chosen_point(c(lon = click$lng, lat = click$lat))
leafletProxy("isoMap") %>%
clearMarkers() %>%
addCircleMarkers(
lng = click$lng, lat = click$lat,
radius = 6, color = "firebrick",
label = "Map Click Location"
)
}
})
# ------------------------------------------------
# Observe clearinf of map
# ------------------------------------------------
observeEvent(input$clear_map, {
# Reset the chosen point
chosen_point(NULL)
# Clear all markers and isochrones from the map
leafletProxy("isoMap") %>%
clearMarkers() %>%
clearShapes() %>%
clearGroup("Isochrones") %>%
clearGroup("NDVI Raster")
# Optional: Reset any other reactive values if needed
showNotification("Map cleared. You can select a new location.")
})
# ------------------------------------------------
# Generate Isochrones
# ------------------------------------------------
isochrones_data <- eventReactive(input$generate_iso, {
leafletProxy("isoMap") %>%
clearGroup("Isochrones") %>%
clearGroup("NDVI Raster")
# If user selected address:
if (input$location_choice == "address") {
if (nchar(input$user_address) < 5) {
showNotification("Please enter a more complete address.", type = "error")
return(NULL)
}
loc_df <- tryCatch({
mb_geocode(input$user_address, access_token = mapbox_token)
}, error = function(e) {
showNotification(paste("Geocoding failed:", e$message), type = "error")
NULL
})
# Check for valid lat/lon
if (is.null(loc_df) || nrow(loc_df) == 0 || is.na(loc_df$lon[1]) || is.na(loc_df$lat[1])) {
showNotification("No valid geocoding results found.", type = "warning")
return(NULL)
}
chosen_point(c(lon = loc_df$lon[1], lat = loc_df$lat[1]))
leafletProxy("isoMap") %>%
clearMarkers() %>%
addCircleMarkers(
lng = loc_df$lon[1], lat = loc_df$lat[1],
radius = 6, color = "navyblue",
label = "Geocoded Address"
) %>%
setView(lng = loc_df$lon[1], lat = loc_df$lat[1], zoom = 13)
}
pt <- chosen_point()
if (is.null(pt)) {
showNotification("No location selected! Provide an address or click the map.", type = "error")
return(NULL)
}
if (length(input$transport_modes) == 0) {
showNotification("Select at least one transportation mode.", type = "error")
return(NULL)
}
if (length(input$iso_times) == 0) {
showNotification("Select at least one isochrone time.", type = "error")
return(NULL)
}
location_sf <- st_as_sf(
data.frame(lon = pt["lon"], lat = pt["lat"]),
coords = c("lon","lat"), crs = 4326
)
iso_list <- list()
for (mode in input$transport_modes) {
for (t in input$iso_times) {
iso <- tryCatch({
mb_isochrone(location_sf, time = as.numeric(t), profile = mode,
access_token = mapbox_token)
}, error = function(e) {
showNotification(paste("Isochrone error:", mode, t, e$message), type = "error")
NULL
})
if (!is.null(iso)) {
iso$mode <- mode
iso$time <- t
iso_list <- append(iso_list, list(iso))
}
}
}
if (length(iso_list) == 0) {
showNotification("No isochrones generated.", type = "warning")
return(NULL)
}
all_iso <- do.call(rbind, iso_list) %>% st_transform(4326)
all_iso
})
# ------------------------------------------------
# Plot Isochrones + NDVI
# ------------------------------------------------
observeEvent(isochrones_data(), {
iso_data <- isochrones_data()
req(iso_data)
iso_data$iso_group <- paste(iso_data$mode, iso_data$time, sep = "_")
pal <- colorRampPalette(brewer.pal(8, "Set2"))
cols <- pal(nrow(iso_data))
for (i in seq_len(nrow(iso_data))) {
poly_i <- iso_data[i, ]
leafletProxy("isoMap") %>%
addPolygons(
data = poly_i,
group = "Isochrones",
color = cols[i],
weight = 2,
fillOpacity = 0.4,
label = paste0(poly_i$mode, " - ", poly_i$time, " mins")
)
}
iso_union <- st_union(iso_data)
iso_union_vect <- vect(iso_union)
ndvi_crop <- crop(ndvi, iso_union_vect)
ndvi_mask <- mask(ndvi_crop, iso_union_vect)
ndvi_vals <- values(ndvi_mask)
ndvi_vals <- ndvi_vals[!is.na(ndvi_vals)]
if (length(ndvi_vals) > 0) {
ndvi_pal <- colorNumeric("YlGn", domain = range(ndvi_vals, na.rm = TRUE), na.color = "transparent")
leafletProxy("isoMap") %>%
addRasterImage(
x = ndvi_mask,
colors = ndvi_pal,
opacity = 0.7,
project = TRUE,
group = "NDVI Raster"
) %>%
addLegend(
position = "bottomright",
pal = ndvi_pal,
values = ndvi_vals,
title = "NDVI"
)
}
leafletProxy("isoMap") %>%
addLayersControl(
baseGroups = c("Street Map (Default)", "Satellite (ESRI)", "CartoDB.Positron"),
overlayGroups = c("Income", "Greenspace",
"Hotspots (KnowBR)", "Coldspots (KnowBR)",
"Isochrones", "NDVI Raster"),
options = layersControlOptions(collapsed = FALSE)
)
})
# ------------------------------------------------
# socio_data Reactive + Summaries
# ------------------------------------------------
socio_data <- reactive({
iso_data <- isochrones_data()
if (is.null(iso_data) || nrow(iso_data) == 0) {
return(data.frame())
}
acs_wide <- cbg_vect_sf %>%
mutate(
population = popE,
med_income = medincE
)
hotspot_union <- st_union(biodiv_hotspots)
coldspot_union <- st_union(biodiv_coldspots)
results <- data.frame()
for (i in seq_len(nrow(iso_data))) {
poly_i <- iso_data[i, ]
dist_hot <- st_distance(poly_i, hotspot_union)
dist_cold <- st_distance(poly_i, coldspot_union)
dist_hot_km <- round(as.numeric(min(dist_hot)) / 1000, 3)
dist_cold_km <- round(as.numeric(min(dist_cold)) / 1000, 3)
inter_acs <- st_intersection(acs_wide, poly_i)
pop_total <- 0
inc_str <- "N/A"
if (nrow(inter_acs) > 0) {
inter_acs$area <- st_area(inter_acs)
inter_acs$area_num <- as.numeric(inter_acs$area)
inter_acs$area_ratio <- inter_acs$area_num / as.numeric(st_area(inter_acs))
inter_acs$weighted_pop <- inter_acs$population * inter_acs$area_ratio
pop_total <- round(sum(inter_acs$weighted_pop, na.rm = TRUE))
w_income <- sum(inter_acs$med_income * inter_acs$area_num, na.rm = TRUE) /
sum(inter_acs$area_num, na.rm = TRUE)
if (!is.na(w_income) && w_income > 0) {
inc_str <- paste0("$", formatC(round(w_income, 2), format = "f", big.mark = ","))
}
}
inter_gs <- st_intersection(osm_greenspace, poly_i)
gs_area_m2 <- 0
if (nrow(inter_gs) > 0) {
gs_area_m2 <- sum(st_area(inter_gs))
}
iso_area_m2 <- as.numeric(st_area(poly_i))
gs_area_m2 <- as.numeric(gs_area_m2)
gs_percent <- ifelse(iso_area_m2 > 0, 100 * gs_area_m2 / iso_area_m2, 0)
poly_vect <- vect(poly_i)
ndvi_crop <- crop(ndvi, poly_vect)
ndvi_mask <- mask(ndvi_crop, poly_vect)
ndvi_vals <- values(ndvi_mask)
ndvi_vals <- ndvi_vals[!is.na(ndvi_vals)]
mean_ndvi <- ifelse(length(ndvi_vals) > 0, round(mean(ndvi_vals, na.rm=TRUE), 3), NA)
inter_gbif <- st_intersection(sf_gbif, poly_i)
n_records <- nrow(inter_gbif)
n_species <- length(unique(inter_gbif$species))
n_birds <- length(unique(inter_gbif$species[ inter_gbif$class == "Aves" ]))
n_mammals <- length(unique(inter_gbif$species[ inter_gbif$class == "Mammalia" ]))
n_plants <- length(unique(inter_gbif$species[ inter_gbif$class %in%
c("Magnoliopsida","Liliopsida","Pinopsida","Polypodiopsida",
"Equisetopsida","Bryopsida","Marchantiopsida") ]))
iso_area_km2 <- round(iso_area_m2 / 1e6, 3)
iso_area_sqm <- round(iso_area_m2, 2)
row_i <- data.frame(
Mode = tools::toTitleCase(poly_i$mode),
Time = poly_i$time,
IsochroneArea_m2 = iso_area_sqm,
IsochroneArea_km2 = iso_area_km2,
DistToHotspot_km = dist_hot_km,
DistToColdspot_km = dist_cold_km,
EstimatedPopulation = pop_total,
MedianIncome = inc_str,
MeanNDVI = ifelse(!is.na(mean_ndvi), mean_ndvi, "N/A"),
GBIF_Records = n_records,
GBIF_Species = n_species,
Bird_Species = n_birds,
Mammal_Species = n_mammals,
Plant_Species = n_plants,
Greenspace_m2 = round(gs_area_m2, 2),
Greenspace_percent = round(gs_percent, 2),
stringsAsFactors = FALSE
)
results <- rbind(results, row_i)
}
iso_union <- st_union(iso_data)
inter_all_gbif <- st_intersection(sf_gbif, iso_union)
union_n_species <- length(unique(inter_all_gbif$species))
rank_percentile <- round(100 * ecdf(cbg_vect_sf$unique_species)(union_n_species), 1)
attr(results, "bio_percentile") <- rank_percentile
# Closest Greenspace from ANY part of the isochrone
dist_mat <- st_distance(iso_union, osm_greenspace) # 1 x N matrix
if (length(dist_mat) > 0) {
min_dist <- min(dist_mat)
min_idx <- which.min(dist_mat)
gs_name <- osm_greenspace$name[min_idx]
attr(results, "closest_greenspace") <- gs_name
} else {
attr(results, "closest_greenspace") <- "None"
}
results
})
# ------------------------------------------------
# Render main summary table
# ------------------------------------------------
output$dataTable <- renderDT({
df <- socio_data()
if (nrow(df) == 0) {
return(DT::datatable(data.frame("Message" = "No isochrones generated yet.")))
}
DT::datatable(
df,
colnames = c(
"Mode" = "Mode",
"Time (min)" = "Time",
"Area (m²)" = "IsochroneArea_m2",
"Area (km²)" = "IsochroneArea_km2",
"Dist. Hotspot (km)" = "DistToHotspot_km",
"Dist. Coldspot (km)" = "DistToColdspot_km",
"Population" = "EstimatedPopulation",
"Median Income" = "MedianIncome",
"Mean NDVI" = "MeanNDVI",
"GBIF Records" = "GBIF_Records",
"Unique Species" = "GBIF_Species",
"Bird Species" = "Bird_Species",
"Mammal Species" = "Mammal_Species",
"Plant Species" = "Plant_Species",
"Greenspace (m²)" = "Greenspace_m2",
"Greenspace (%)" = "Greenspace_percent"
),
options = list(pageLength = 10, autoWidth = TRUE),
rownames = FALSE
)
})
# ------------------------------------------------
# Biodiversity Access Score + Closest Greenspace
# ------------------------------------------------
output$bioScoreBox <- renderUI({
df <- socio_data()
if (nrow(df) == 0) return(NULL)
percentile <- attr(df, "bio_percentile")
if (is.null(percentile)) percentile <- "N/A"
else percentile <- paste0(percentile, "th Percentile")
wellPanel(
HTML(paste0("<h2>Biodiversity Access Score: ", percentile, "</h2>"))
)
})
output$closestGreenspaceUI <- renderUI({
df <- socio_data()
if (nrow(df) == 0) return(NULL)
gs_name <- attr(df, "closest_greenspace")
if (is.null(gs_name)) gs_name <- "None"
tagList(
strong("Closest Greenspace (from any part of the Isochrone):"),
p(gs_name)
)
})
# ------------------------------------------------
# Secondary table: user-selected CLASS & FAMILY
# ------------------------------------------------
output$classTable <- renderDT({
iso_data <- isochrones_data()
if (is.null(iso_data) || nrow(iso_data) == 0) {
return(DT::datatable(data.frame("Message" = "No isochrones generated yet.")))
}
iso_union <- st_union(iso_data)
inter_gbif <- st_intersection(sf_gbif, iso_union)
# Add a quick ACS intersection for mean income & NDVI if needed
acs_wide <- cbg_vect_sf %>% mutate(
income = median_inc,
ndvi = ndvi_mean
)
inter_gbif_acs <- st_intersection(inter_gbif, acs_wide)
if (input$class_filter != "All") {
inter_gbif_acs <- inter_gbif_acs[ inter_gbif_acs$class == input$class_filter, ]
}
if (input$family_filter != "All") {
inter_gbif_acs <- inter_gbif_acs[ inter_gbif_acs$family == input$family_filter, ]
}
if (nrow(inter_gbif_acs) == 0) {
return(DT::datatable(data.frame("Message" = "No records for that combination in the isochrone.")))
}
species_counts <- inter_gbif_acs %>%
st_drop_geometry() %>%
group_by(species) %>%
summarize(
n_records = n(),
mean_income = round(mean(income, na.rm=TRUE), 2),
mean_ndvi = round(mean(ndvi, na.rm=TRUE), 3),
.groups = "drop"
) %>%
arrange(desc(n_records))
DT::datatable(
species_counts,
colnames = c("Species", "Number of Records", "Mean Income", "Mean NDVI"),
options = list(pageLength = 10),
rownames = FALSE
)
})
# ------------------------------------------------
# Ggplot: Biodiversity & Socioeconomic Summary
# ------------------------------------------------
output$bioSocPlot <- renderPlot({
df <- socio_data()
if (nrow(df) == 0) return(NULL)
df_plot <- df %>%
mutate(IsoLabel = paste0(Mode, "-", Time, "min"))
ggplot(df_plot, aes(x = IsoLabel)) +
geom_col(aes(y = GBIF_Species), fill = "steelblue", alpha = 0.7) +
geom_line(aes(y = EstimatedPopulation / 1000, group = 1), color = "red", size = 1) +
geom_point(aes(y = EstimatedPopulation / 1000), color = "red", size = 3) +
labs(
x = "Isochrone (Mode-Time)",
y = "Blue bars: Unique Species \n | Red line: Population (thousands)",
title = "Biodiversity & Socioeconomic Summary"
) +
theme_minimal(base_size = 14) +
theme(
axis.text.x = element_text(angle = 45, hjust = 1, size = 12),
axis.text.y = element_text(size = 12),
axis.title.x = element_text(size = 14),
axis.title.y = element_text(size = 14)
)
})
# ------------------------------------------------
# Bar plot: GBIF records by institutionCode
# ------------------------------------------------
output$collectionPlot <- renderPlot({
iso_data <- isochrones_data()
if (is.null(iso_data) || nrow(iso_data) == 0) {
plot.new()
title("No GBIF records found in this isochrone.")
return(NULL)
}
iso_union <- st_union(iso_data)
inter_gbif <- st_intersection(sf_gbif, iso_union)
if (nrow(inter_gbif) == 0) {
plot.new()
title("No GBIF records found in this isochrone.")
return(NULL)
}
df_code <- inter_gbif %>%
st_drop_geometry() %>%
group_by(institutionCode) %>%
summarize(count = n(), .groups = "drop") %>%
arrange(desc(count))
ggplot(df_code, aes(x = reorder(institutionCode, -count), y = count)) +
geom_bar(stat = "identity", fill = "darkorange", alpha = 0.7) +
labs(
x = "Institution Code",
y = "Number of Records",
title = "GBIF Records by Institution Code (Isochrone Union)"
) +
theme_minimal(base_size = 14) +
theme(
axis.text.x = element_text(angle = 45, hjust = 1, size = 12),
axis.text.y = element_text(size = 12),
axis.title.x = element_text(size = 14),
axis.title.y = element_text(size = 14)
)
})
# ------------------------------------------------
# Additional Section: mapview for species richness vs. data availability
# ------------------------------------------------
output$mapNUI <- renderUI({
map_n <- mapview(cbg_vect_sf, zcol = "n", layer.name="Data Availability (n)")
map_n@map
})
output$mapSpeciesUI <- renderUI({
map_s <- mapview(cbg_vect_sf, zcol = "n_species", layer.name="Species Richness (n_species)")
map_s@map
})
# ------------------------------------------------
# Additional Plot: n_observations vs n_species
# ------------------------------------------------
output$obsVsSpeciesPlot <- renderPlot({
# A simple scatter plot of n_observations vs. n_species from cbg_vect_sf
ggplot(cbg_vect_sf, aes(x = log(n_observations+1), y = log(unique_species+1)) ) +
geom_point(color = "blue", alpha = 0.6) +
labs(
x = "Number of Observations (n_observations)",
y = "Number of Species (n_species)",
title = "Data Availability vs. Species Richness"
) +
theme_minimal(base_size = 14)
})
# ------------------------------------------------
# Additional Plot: Linear model of n_species ~ n_observations + median_inc + ndvi_mean
# ------------------------------------------------
# output$lmCoefficientsPlot <- renderPlot({
# # Build a linear model with cbg_vect_sf
# # Must ensure there are no NAs
# df_lm <- cbg_vect_sf %>%
# filter(!is.na(n_observations),
# !is.na(unique_species),
# !is.na(median_inc),
# !is.na(ndvi_mean))
#
# if (nrow(df_lm) < 5) {
# # not enough data
# plot.new()
# title("Not enough data for linear model.")
# return(NULL)
# }
#
# # Model
# fit <- lm(unique_species ~ n_observations + median_inc + ndvi_mean, data = df_lm)
#
# # Using sjPlot to visualize coefficients
# # We store in an object and then print it
# p <- plot_model(fit, show.values = TRUE, value.offset = .3, title = "LM Coefficients: n_species ~ n_observations + median_inc + ndvi_mean")
# print(p)
# })
}
shinyApp(ui, server)
# library(profvis)
#
# profvis({
# shinyApp(ui, server)
# }) |