Spaces:
Sleeping
Sleeping
import streamlit as st | |
from pathlib import Path | |
from langchain.llms.openai import OpenAI | |
from langchain.agents import create_sql_agent | |
from langchain.sql_database import SQLDatabase | |
from langchain.agents.agent_types import AgentType | |
from langchain.callbacks import StreamlitCallbackHandler | |
from langchain.agents.agent_toolkits import SQLDatabaseToolkit | |
from sqlalchemy import create_engine | |
import sqlite3 | |
import os | |
from langchain_openai import ChatOpenAI | |
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] | |
openai_api_key = st.secrets["OPENAI_API_KEY"] | |
st.set_page_config(page_title="Chat with Protected Areas Database", page_icon="🦜") | |
st.title("🦜 LangChain: Chat with Protected Areas Database") | |
INJECTION_WARNING = """ | |
Experimental! | |
""" | |
LOCALDB = "duckdb:///pad.duckdb" | |
# User inputs | |
radio_opt = ["US Protected Areas v3"] | |
selected_opt = st.sidebar.radio(label="Choose suitable option", options=radio_opt) | |
if radio_opt.index(selected_opt) == 1: | |
st.sidebar.warning(INJECTION_WARNING, icon="⚠️") | |
db_uri = st.sidebar.text_input( | |
label="Database URI", placeholder="duckdb:///pad.duckdb" | |
) | |
else: | |
db_uri = LOCALDB | |
#st.sidebar.text_input(label="OpenAI API Key", type="password") | |
# Setup agent | |
llm = OpenAI(openai_api_key=openai_api_key, model="gpt-3.5-turbo", temperature=0, streaming=True) | |
def configure_db(db_uri): | |
return SQLDatabase.from_uri(database_uri=db_uri, view_support=True) | |
db = configure_db(db_uri) | |
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) | |
agent = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True) | |
if "messages" not in st.session_state or st.sidebar.button("Clear message history"): | |
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}] | |
for msg in st.session_state.messages: | |
st.chat_message(msg["role"]).write(msg["content"]) | |
user_query = st.chat_input(placeholder="Ask me anything!") | |
if user_query: | |
st.session_state.messages.append({"role": "user", "content": user_query}) | |
st.chat_message("user").write(user_query) | |
with st.chat_message("assistant"): | |
st_cb = StreamlitCallbackHandler(st.container()) | |
response = agent.run(user_query, callbacks=[st_cb]) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
st.write(response) | |