Spaces:
Sleeping
Sleeping
rag chat
Browse files- pages/3_🕮_Docs_Demo.py +127 -0
- requirements.txt +3 -0
pages/3_🕮_Docs_Demo.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
|
| 5 |
+
|
| 6 |
+
# +
|
| 7 |
+
|
| 8 |
+
st.set_page_config(page_title="Protected Areas Database Chat", page_icon="🦜")
|
| 9 |
+
st.title("Protected Areas Database Chat")
|
| 10 |
+
|
| 11 |
+
st.markdown('''
|
| 12 |
+
|
| 13 |
+
This Chatbot is designed only to answer questions based on [PAD Technical How-Tos](https://www.protectedlands.net/pad-us-technical-how-tos/). The Chatbot will refuse to answer questions outside of this context.
|
| 14 |
+
|
| 15 |
+
Example queries:
|
| 16 |
+
|
| 17 |
+
- What is the difference between Fee and Easements?
|
| 18 |
+
- What do the gap status codes mean?
|
| 19 |
+
''')
|
| 20 |
+
# -
|
| 21 |
+
|
| 22 |
+
# optional
|
| 23 |
+
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
| 24 |
+
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
|
| 25 |
+
|
| 26 |
+
import bs4
|
| 27 |
+
from langchain import hub
|
| 28 |
+
from langchain_community.document_loaders import WebBaseLoader
|
| 29 |
+
from langchain_chroma import Chroma
|
| 30 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 31 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 32 |
+
from langchain_openai import OpenAIEmbeddings
|
| 33 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 34 |
+
from langchain_community.llms import Ollama
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
from langchain_openai import ChatOpenAI
|
| 38 |
+
|
| 39 |
+
# +
|
| 40 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
|
| 41 |
+
|
| 42 |
+
# Setup LLM and QA chain
|
| 43 |
+
|
| 44 |
+
models = {"chatgpt3.5": ChatOpenAI(model="gpt-3.5-turbo", temperature=0, api_key=st.secrets["OPENAI_API_KEY"], streaming=True),
|
| 45 |
+
"chatgpt4": ChatOpenAI(model="gpt-4", temperature=0, api_key=st.secrets["OPENAI_API_KEY"]),
|
| 46 |
+
"phi3": Ollama(model="phi3", temperature=0),
|
| 47 |
+
"duckdb-nsql": Ollama(model="duckdb-nsql", temperature=0),
|
| 48 |
+
"command-r-plus": Ollama(model="command-r-plus", temperature=0),
|
| 49 |
+
"mistral": Ollama(model="mistral", temperature=0),
|
| 50 |
+
"wizardlm2": Ollama(model="wizardlm2", temperature=0),
|
| 51 |
+
"sqlcoder": Ollama(model="sqlcoder", temperature=0),
|
| 52 |
+
"zephyr": Ollama(model="zephyr", temperature=0),
|
| 53 |
+
"gemma": Ollama(model="gemma", temperature=0),
|
| 54 |
+
"llama3": Ollama(model="llama3", temperature=0),
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
with st.sidebar:
|
| 59 |
+
choice = st.radio("Select an LLM:", models)
|
| 60 |
+
llm = models[choice]
|
| 61 |
+
|
| 62 |
+
# -
|
| 63 |
+
|
| 64 |
+
# Load, chunk and index the contents of the blog.
|
| 65 |
+
loader = WebBaseLoader(
|
| 66 |
+
web_paths=(["https://www.protectedlands.net/pad-us-technical-how-tos/",
|
| 67 |
+
"https://www.protectedlands.net/uses-of-pad-us/",
|
| 68 |
+
# "https://www.protectedlands.net/pad-us-data-structure-attributes/"
|
| 69 |
+
]),
|
| 70 |
+
bs_kwargs=dict(
|
| 71 |
+
parse_only=bs4.SoupStrainer(
|
| 72 |
+
class_=("main-body")
|
| 73 |
+
)
|
| 74 |
+
),
|
| 75 |
+
)
|
| 76 |
+
docs = loader.load()
|
| 77 |
+
|
| 78 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=400)
|
| 79 |
+
splits = text_splitter.split_documents(docs)
|
| 80 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
|
| 81 |
+
|
| 82 |
+
# Retrieve and generate using the relevant snippets of the blog.
|
| 83 |
+
retriever = vectorstore.as_retriever()
|
| 84 |
+
prompt = hub.pull("rlm/rag-prompt")
|
| 85 |
+
|
| 86 |
+
def format_docs(docs):
|
| 87 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
rag_chain = (
|
| 91 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
| 92 |
+
| prompt
|
| 93 |
+
| llm
|
| 94 |
+
| StrOutputParser()
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# +
|
| 98 |
+
# rag_chain.invoke("What is the difference between Fee and Easement?")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# +
|
| 103 |
+
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
| 104 |
+
from langchain.memory import ConversationBufferMemory
|
| 105 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 106 |
+
|
| 107 |
+
# Setup memory for contextual conversation
|
| 108 |
+
msgs = StreamlitChatMessageHistory()
|
| 109 |
+
memory = ConversationBufferMemory(memory_key="chat_history", chat_memory=msgs, return_messages=True)
|
| 110 |
+
|
| 111 |
+
#qa_chain = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory, verbose=True)
|
| 112 |
+
|
| 113 |
+
if len(msgs.messages) == 0 or st.sidebar.button("Clear message history"):
|
| 114 |
+
msgs.clear()
|
| 115 |
+
msgs.add_ai_message("How can I help you?")
|
| 116 |
+
|
| 117 |
+
avatars = {"human": "user", "ai": "assistant"}
|
| 118 |
+
for msg in msgs.messages:
|
| 119 |
+
st.chat_message(avatars[msg.type]).write(msg.content)
|
| 120 |
+
|
| 121 |
+
if user_query := st.chat_input(placeholder="Ask me about PAD!"):
|
| 122 |
+
st.chat_message("user").write(user_query)
|
| 123 |
+
|
| 124 |
+
with st.chat_message("assistant"):
|
| 125 |
+
response = rag_chain.invoke(user_query)
|
| 126 |
+
response
|
| 127 |
+
|
requirements.txt
CHANGED
|
@@ -4,6 +4,9 @@ altair
|
|
| 4 |
langchain
|
| 5 |
langchain-community
|
| 6 |
langchain-openai
|
|
|
|
|
|
|
|
|
|
| 7 |
SQLAlchemy==1.4.52
|
| 8 |
streamlit
|
| 9 |
geopandas
|
|
|
|
| 4 |
langchain
|
| 5 |
langchain-community
|
| 6 |
langchain-openai
|
| 7 |
+
langchainhub
|
| 8 |
+
langchain-chroma
|
| 9 |
+
bs4
|
| 10 |
SQLAlchemy==1.4.52
|
| 11 |
streamlit
|
| 12 |
geopandas
|