correct formatting
Browse files
app.py
CHANGED
@@ -1,84 +1,100 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
get_completion = pipeline("summarization",model="sshleifer/distilbart-cnn-12-6")
|
5 |
get_ner = pipeline("ner", model="dslim/bert-base-NER")
|
6 |
-
get_zero = pipeline(
|
|
|
|
|
|
|
7 |
|
8 |
def summarize_text(input):
|
9 |
output = get_completion(input)
|
10 |
-
return output[0][
|
|
|
11 |
|
12 |
def merge_tokens(tokens):
|
13 |
merged_tokens = []
|
14 |
for token in tokens:
|
15 |
-
if
|
|
|
|
|
|
|
|
|
16 |
# If current token continues the entity of the last one, merge them
|
17 |
last_token = merged_tokens[-1]
|
18 |
-
last_token[
|
19 |
-
last_token[
|
20 |
-
last_token[
|
21 |
else:
|
22 |
# Otherwise, add the token to the list
|
23 |
merged_tokens.append(token)
|
24 |
return merged_tokens
|
25 |
|
|
|
26 |
def named_entity_recognition(input):
|
27 |
output = get_ner(input)
|
28 |
merged_output = merge_tokens(output)
|
29 |
return {"text": input, "entities": output}
|
30 |
|
31 |
-
|
32 |
-
|
|
|
33 |
return output
|
34 |
|
35 |
-
|
36 |
-
|
|
|
37 |
out = {}
|
38 |
-
for i,j in zip(zero_shot_out[
|
39 |
-
out.update({i:j})
|
40 |
print(out)
|
41 |
return out
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
demo.launch(enable_queue=True)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
get_completion = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
5 |
get_ner = pipeline("ner", model="dslim/bert-base-NER")
|
6 |
+
get_zero = pipeline(
|
7 |
+
"zero-shot-classification", model="MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
|
8 |
+
)
|
9 |
+
|
10 |
|
11 |
def summarize_text(input):
|
12 |
output = get_completion(input)
|
13 |
+
return output[0]["summary_text"]
|
14 |
+
|
15 |
|
16 |
def merge_tokens(tokens):
|
17 |
merged_tokens = []
|
18 |
for token in tokens:
|
19 |
+
if (
|
20 |
+
merged_tokens
|
21 |
+
and token["entity"].startswith("I-")
|
22 |
+
and merged_tokens[-1]["entity"].endswith(token["entity"][2:])
|
23 |
+
):
|
24 |
# If current token continues the entity of the last one, merge them
|
25 |
last_token = merged_tokens[-1]
|
26 |
+
last_token["word"] += token["word"].replace("##", "")
|
27 |
+
last_token["end"] = token["end"]
|
28 |
+
last_token["score"] = (last_token["score"] + token["score"]) / 2
|
29 |
else:
|
30 |
# Otherwise, add the token to the list
|
31 |
merged_tokens.append(token)
|
32 |
return merged_tokens
|
33 |
|
34 |
+
|
35 |
def named_entity_recognition(input):
|
36 |
output = get_ner(input)
|
37 |
merged_output = merge_tokens(output)
|
38 |
return {"text": input, "entities": output}
|
39 |
|
40 |
+
|
41 |
+
def zero_shot_pred(text, check_labels):
|
42 |
+
output = get_zero(text, check_labels)
|
43 |
return output
|
44 |
|
45 |
+
|
46 |
+
def label_score_dict(text, check_labels):
|
47 |
+
zero_shot_out = zero_shot_pred(text, check_labels)
|
48 |
out = {}
|
49 |
+
for i, j in zip(zero_shot_out["labels"], zero_shot_out["scores"]):
|
50 |
+
out.update({i: j})
|
51 |
print(out)
|
52 |
return out
|
53 |
|
54 |
+
|
55 |
+
interface_summarise = gr.Interface(
|
56 |
+
fn=summarize_text,
|
57 |
+
inputs=[gr.Textbox(label="Text to summarise", lines=5)],
|
58 |
+
outputs=[gr.Textbox(label="Summary")],
|
59 |
+
title="Text Summarizer",
|
60 |
+
description="Summary of text via `distillBART-CNN` model!",
|
61 |
+
)
|
62 |
+
|
63 |
+
interface_ner = gr.Interface(
|
64 |
+
fn=named_entity_recognition,
|
65 |
+
inputs=[gr.Textbox(label="Text to find entities", lines=2)],
|
66 |
+
outputs=[gr.HighlightedText(label="Text with entities")],
|
67 |
+
title="NER with dslim/bert-base-NER",
|
68 |
+
description="Find entities using the `dslim/bert-base-NER` model under the hood!",
|
69 |
+
allow_flagging="never",
|
70 |
+
examples=[
|
71 |
+
"Tim Cook is the CEO of Apple, stays in California and makes iPhones ",
|
72 |
+
"My name is Bose and I am a physicist living in Delhi",
|
73 |
+
],
|
74 |
+
)
|
75 |
+
|
76 |
+
interface_zero_shot = gr.Interface(
|
77 |
+
fn=label_score_dict,
|
78 |
+
inputs=[
|
79 |
+
gr.Textbox(label="Text to classify", lines=2),
|
80 |
+
gr.Textbox(label="Check for labels"),
|
81 |
+
],
|
82 |
+
outputs=gr.Label(num_top_classes=4),
|
83 |
+
title="Zero-Shot Preds using DeBERTa-v3-base-mnli",
|
84 |
+
description="Classify sentence on self defined target vars",
|
85 |
+
examples=[
|
86 |
+
[
|
87 |
+
"Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
|
88 |
+
"mobile, website, billing, account access",
|
89 |
+
],
|
90 |
+
# "My name is Bose and I am a physicist living in Delhi"
|
91 |
+
],
|
92 |
+
)
|
93 |
+
|
94 |
+
demo = gr.TabbedInterface(
|
95 |
+
[interface_summarise, interface_ner, interface_zero_shot],
|
96 |
+
["Text Summary ", "Named Entity Recognition", "Zero Shot Classifications"],
|
97 |
+
)
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
demo.launch(enable_queue=True)
|