File size: 3,909 Bytes
7bcf8d7 1e5623a 7bcf8d7 48dfeff 9c122f0 6643110 48dfeff 9c122f0 7bcf8d7 48dfeff 6ff00e7 48dfeff 9c122f0 48dfeff 1c2e91c 48dfeff 62fc325 9c122f0 7bcf8d7 5ccec7c 7bcf8d7 48a2ec2 7bcf8d7 9c122f0 7bcf8d7 48dfeff 7bcf8d7 67ce7a9 7bcf8d7 5ccec7c 7bcf8d7 5ccec7c 7bcf8d7 5ccec7c 7bcf8d7 886f6ba 7bcf8d7 5ccec7c 7bcf8d7 48dfeff 1c2e91c 7bcf8d7 5ccec7c 7bcf8d7 ef8804e 5ccec7c ef8804e 7bcf8d7 5ccec7c 7bcf8d7 5ccec7c 114efae 7bcf8d7 ed7e000 6c1a3f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import gradio as gr
from asr import transcribe_multiple_files, ASR_LANGUAGES, model
from lid import identify, LID_EXAMPLES
from csv_processor import CSV_FILE_PATH
import logging
import soundfile as sf
import os
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
def download_csv():
file_path = CSV_FILE_PATH # Путь к вашему файлу
if os.path.exists(file_path): # Проверяем, существует ли файл
return file_path # Если файл существует, возвращаем путь для скачивания
else:
logger.error(f"file {file_path} not found!")
full_path = "/home/user/app/"+ file_path
exist_full_path = os.path.exists(full_path)
res = "found" if exist_full_path else "not found"
logger.error(f"file {exist_full_path} {res}!")
return None # Возвращаем None, если файла нет
# Prepare language options for Dropdown
language_options = [f"{k} ({v})" for k, v in ASR_LANGUAGES.items()]
bam_val = "bam (Bamanankan)"
bam_index = 0 if bam_val not in language_options else language_options.index(bam_val)
download_interface = gr.Interface(
fn=download_csv,
inputs=[],
outputs=gr.File(label="Download CSV"),
title="Download CSV file",
description="Download file audio_plus_hash_uniq_07102024.csv"
)
mms_transcribe = gr.Interface(
fn=transcribe_multiple_files,
inputs=[
gr.File(type="filepath"), # Allow multiple audio files
gr.Dropdown(
choices=language_options,
label="Language",
value=language_options[bam_index] if language_options else None,
),
gr.Textbox(label="Optional: Provide your own transcription"),
],
outputs=gr.Textbox(label="Transcriptions", lines=10),
title="Speech-to-text",
description="Transcribe multiple audio files in your desired language.",
allow_flagging="never",
)
mms_identify = gr.Interface(
fn=identify,
inputs=[gr.Audio()],
outputs=gr.Label(num_top_classes=10),
examples=LID_EXAMPLES,
title="Language Identification",
description="Identify the language of input audio.",
allow_flagging="never",
)
tabbed_interface = gr.TabbedInterface(
[mms_transcribe, mms_identify, download_interface],
["Speech-to-text", "Language Identification", "Download CSV file"],
)
with gr.Blocks() as demo:
gr.Markdown(
"<p align='center' style='font-size: 20px;'>MMS: Scaling Speech Technology to 1000+ languages demo. See our <a href='https://ai.facebook.com/blog/multilingual-model-speech-recognition/'>blog post</a> and <a href='https://arxiv.org/abs/2305.13516'>paper</a>.</p>"
)
gr.HTML(
"""<center>Click on the appropriate tab to explore Speech-to-text (ASR) and Language identification (LID) demos.</center>"""
)
gr.HTML(
"""<center>You can also finetune MMS models on your data using the recipes provided here - <a href='https://huggingface.co/blog/mms_adapters'>ASR</a> <a href='https://github.com/ylacombe/finetune-hf-vits'>TTS</a></center>"""
)
gr.HTML(
"""<center><a href="https://huggingface.co/spaces/facebook/MMS?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"><img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for more control and no queue.</center>"""
)
tabbed_interface.render()
gr.HTML(
"""
<div class="footer" style="text-align:center">
<p>
Model by <a href="https://ai.facebook.com" style="text-decoration: underline;" target="_blank">Meta AI</a> - Gradio Demo by 🤗 Hugging Face
</p>
</div>
"""
)
if __name__ == "__main__":
mms_transcribe.launch() |